First, isolate the more complicated radical on one side of the equation. (This will make it easier to square both sides.) We will subtract \(\sqrt{x} \) from both sides.
\begin{equation*}
\sqrt{x-7}=7-\sqrt{x}
\end{equation*}
Now square each side to remove one radical. Be careful when squaring the binomial \(7-\sqrt{x} \text{.}\)
\begin{align*}
(\sqrt{x-7})^{\alert{2}}\amp =(7-\sqrt{x})^{\alert{2}}\\
x-7\amp = 49-14\sqrt{x}+x
\end{align*}
Collect like terms, and isolate the radical on one side of the equation.
\begin{align*}
-56 \amp = -14\sqrt{x}\amp\amp\blert{\text{Divide both sides by }-14.}\\
4 \amp = \sqrt{x}
\end{align*}
Now square again to obtain
\begin{align*}
(4)^{\alert{2}} \amp = (\sqrt{x})^{\alert{2}}\\
16 \amp = x
\end{align*}
Check
Does \(\sqrt{\alert{16}-7}+\sqrt{\alert{16}}=7\text{?}\)
\(\hphantom{blank}\blert{\text{Yes. The solution is } 16.}\)