First we write down the coordinates of \(P\) and \(Q\text{:}\)
\begin{equation*}
P(-3,\blert{-4})~~~~~~\text{and}~~~~~~Q(-3,\blert{-2})
\end{equation*}
and compute the directed distance from \(P\) to \(Q\text{:}\)
\begin{equation*}
\Delta y = -2-(-4) = 2~~~~~~~~~~~~~~~~~~\blert{\text{final} - \text{initial}}
\end{equation*}
Then we write down the coordinates of \(Q\) and \(R\text{:}\)
\begin{equation*}
Q(\blert{-3},-2)~~~~~~\text{and}~~~~~~R(\blert{5},-2)
\end{equation*}
and compute the directed distance from \(Q\) to \(R\text{:}\)
\begin{equation*}
\Delta x = 5-(-3) = 8~~~~~~~~~~~~~~~~~~\blert{\text{final} - \text{initial}}
\end{equation*}
We get the same value for the slope as in part (a),
\begin{equation*}
m = \dfrac{\Delta y}{\Delta x} = \dfrac{2}{8} = \dfrac{1}{4}
\end{equation*}