Square Root.
The number \(s\) is called a square root of a number \(b\) if \(s^2=b\text{.}\)
| \(\sqrt{1}= \fillinmath{XXXXXXXXXXXXXXX}\) | \(\hphantom{0000}\) | \(\sqrt{6}= \fillinmath{XXXXXXXXXXXXXXX}\) |
| \(\sqrt{2}= \fillinmath{XXXXXXXXXXXXXXX}\) | \(\hphantom{0000}\) | \(\sqrt{7}= \fillinmath{XXXXXXXXXXXXXXX}\) |
| \(\sqrt{3}= \fillinmath{XXXXXXXXXXXXXXX}\) | \(\hphantom{0000}\) | \(\sqrt{8}= \fillinmath{XXXXXXXXXXXXXXX}\) |
| \(\sqrt{4}= \fillinmath{XXXXXXXXXXXXXXX}\) | \(\hphantom{0000}\) | \(\sqrt{9}= \fillinmath{XXXXXXXXXXXXXXX}\) |
| \(\sqrt{5}= \fillinmath{XXXXXXXXXXXXXXX}\) | \(\hphantom{0000}\) | \(\sqrt{10}= \fillinmath{XXXXXXXXXXXXXXX}\) |
| \(a\) | \(b\) | \(a+b\) | \((a+b)^2\) | \(a^2\) | \(b^2\) | \(a^2+b^2\) |
| \(2\) | \(3\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(3\) | \(4\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(1\) | \(5\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(-2\) | \(6\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(a\) | \(b\) | \(a+b\) | \(a^2\) | \(b^2\) | \(a^2+b^2\) | \(\sqrt{a^2+b^2}\) |
| \(3\) | \(4\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(2\) | \(5\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(1\) | \(6\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(-2\) | \(-3\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(a\) | \(b\) | \(a+b\) | \(\sqrt{a+b}\) | \(\sqrt{a}\) | \(\sqrt{b}\) | \(\sqrt{a}+\sqrt{b}\) |
| \(2\) | \(7\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(4\) | \(9\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(1\) | \(5\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(9\) | \(16\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(a\) | \(b\) | \(a+b\) | \(\sqrt{a}\) | \(\sqrt{b}\) | \(\sqrt{a}+\sqrt{b}\) | \((\sqrt{a}+\sqrt{b})^2\) |
| \(4\) | \(9\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(1\) | \(4\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(3\) | \(5\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(6\) | \(10\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |