Section 6.1 Integer Exponents
Subsection 1. Use the laws of exponents
Recall the five Laws of Exponents.
Laws of Exponents.
\(\displaystyle \displaystyle{a^m\cdot a^n = a^{m+n}}\)
\(\displaystyle \dfrac{a^m}{a^n}=\begin{cases} a^{m-n} \amp \text{if}~m \gt n\\ \dfrac{1}{a^{n-m}} \amp \text{if}~n \gt m \end{cases}\)
\(\displaystyle \displaystyle{\left(a^m\right)^n=a^{mn}}\)
\(\displaystyle \displaystyle{\left(ab\right)^n=a^n b^n}\)
\(\displaystyle \displaystyle{\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}}\)
Subsubsection Examples
Example 6.1.
Multiply \(~(2x^2y)(5x^4y^3)~\text{.}\)
Rearrange the factors to group together the numerical coefficients and the powers of each base.
Multiply the coefficients together, and use the first law of exponents to find the products of the variable factors.
Example 6.2.
Divide \(~\dfrac{3x^2y^4}{6x^3y}\text{.}\)
Consider the numerical coefficients and the powers of each base separately. Use the second law of exponents to simplify each quotient of powers.
Example 6.3.
Simplify \(~(5a^3b)^2\text{.}\)
Apply the fourth law of exponents and square each factor.
Example 6.4.
Simplify \(~\left(\dfrac{2}{y^3}\right)^3\text{.}\)
Apply the fifth law of exponents.
Subsubsection Exercises
Checkpoint 6.5.
Multiply \(~-3a^4b(-4a^3b)\text{.}\)
Checkpoint 6.6.
Divide \(~\dfrac{8x^2y}{12x^5y^3}\text{.}\)
Checkpoint 6.7.
Simplify \(~(6pq^4)^3\text{.}\)
Checkpoint 6.8.
Simplify \(~\left(\dfrac{n^3}{k^4}\right)^8\text{.}\)
Subsection 2. Evaluate powers with negative exponents
Remember that a negative exponent indicates a reciprocal, so for example
A negative exponent does not mean that the power is negative. So for example
\(4^{-2}\) does not mean \(-16\text{.}\)
Subsubsection Examples
Example 6.9.
Write each expression without using negative exponents.
- \(\displaystyle 10^{-4}\)
- \(\displaystyle \left(\dfrac{x}{4}\right)^{-3}\)
- \(10^{-4} = \dfrac{1}{10^4} = \dfrac{1}{10,000}~\text{,}\) or \(~0.0001\text{.}\)
-
To compute a negative power of a fraction, we compute the corresponding positive power of its reciprocal. Thus,
\begin{equation*} \left(\dfrac{x}{4}\right)^{-3} = \left(\dfrac{4}{x}\right)^3 = \dfrac{64}{x^3} \end{equation*}
Example 6.10.
Write each expression using negative exponents.
- \(\displaystyle \dfrac{1}{3a^4a^2}\)
- \(\displaystyle \dfrac{8}{x^4}\)
- \(\displaystyle \dfrac{1}{3a^4a^2} = 3^{-4}a^{-2}\)
- \(\displaystyle \dfrac{8}{x^4} = 8x^{-4}\)
Subsubsection Exercises
Checkpoint 6.11.
Write each expression using negative exponents and evaluate.
- \(\displaystyle (-6)^{-2}\)
- \(\displaystyle \left(\dfrac{3}{5}\right)^{-2}\)
- \(\displaystyle \dfrac{1}{6^2} = \dfrac{1}{36}\)
- \(\displaystyle \dfrac{5^2}{3^2} = \dfrac{25}{9}\)
Checkpoint 6.12.
Write each expression using negative exponents.
- \(\displaystyle 4t^{-2}\)
- \(\displaystyle (4t)^{-2}\)
- \(\displaystyle \dfrac{4}{t^2}\)
- \(\displaystyle \dfrac{1}{16t^2}\)
Subsection 3. Use scientific notation
If we move the decimal point to the left, we are making a number smaller, so we must multiply by a positive power of 10 to compensate. If we move the decimal point to the right, we must multiply by a negative power of 10.
Subsubsection Example
Example 6.13.
Write each number in scientific notation.
- \(\displaystyle 62,000,000\)
- \(\displaystyle 0.000431\)
-
First, we position the decimal point so that there is just one nonzero digit to the left of the decimal.
\begin{equation*} 62,000,000 = 6.2 \times \underline{\hspace{2.727272727272727em}} \end{equation*}To recover \(62,000,000\) from \(6.2\text{,}\) we must move the decimal point seven places to the right. Therefore, we multiply \(6.2\) by \(10^7\text{.}\)
\begin{equation*} 62,000,000 = 6.2 \times 10^7 \end{equation*} -
First, we position the decimal point so that there is just one nonzero digit to the left of the decimal.
\begin{equation*} 0.000431 = 4.31 \times \underline{\hspace{2.727272727272727em}} \end{equation*}To recover \(0.000431\) from \(4.31\text{,}\) we must move the decimal point seven places to the right. Therefore, we multiply \(4.31\) by \(10^{-4}\text{.}\)
\begin{equation*} 0.000431 = 4.31 \times 10^{-4} \end{equation*}
Subsubsection Exercise
Checkpoint 6.14.
Write each number in scientific notation.
The largest living animal is the blue whale, with an average weight of \(~120,000,000~\) grams.
The smallest animal is the fairy fly beetle, which weighs about \(~0.000005~\) grams.
- \(\displaystyle 1.2 \times 10^8\)
- \(\displaystyle 5 \times 10^{-6}\)