Skip to main content

Section 8.4 More Operations on Algebraic Fractions

Subsection 1. Work with radicals

Rationalizing the denominator of a fraction helps maintain accuracy.

Subsubsection Examples

Example 8.43.

Simplify \(~\dfrac{3\sqrt{2}}{\sqrt{3}}\)

Solution

We can rationalize the denominator by multiplying mumerator and denominator by \(\blert{\sqrt{3}}\text{:}\)

\begin{equation*} \dfrac{3\sqrt{2}}{\sqrt{3}} \cdot \blert{\dfrac{\sqrt{3}}{\sqrt{3}}} = \dfrac{3\sqrt{6}}{3} = \sqrt{6} \end{equation*}

or we can divide 3 by \(\sqrt{3}\) to get \(\sqrt{3}\text{.}\) (Remember that \(\sqrt{3}~\sqrt{3} = 3\text{.}\))

\begin{equation*} \dfrac{\blert{3}\sqrt{2}}{\blert{\sqrt{3}}} = \blert{\sqrt{3}}~\sqrt{2} = \sqrt{6} \end{equation*}
Example 8.44.

Combine \(~\dfrac{3}{\sqrt{2}} + \dfrac{5}{2}\)

Solution

The LCD for the two fractions is 2, and the building factor for the first fraction is \(\blert{\sqrt{2}}\text{.}\)

\begin{align*} \dfrac{3}{\sqrt{2}} + \dfrac{5}{2} \amp = \dfrac{3}{\sqrt{2}} \cdot \blert{\dfrac{\sqrt{2}}{\sqrt{2}}} + \dfrac{5}{2}\\ \amp = \dfrac{3\sqrt{2}}{2} + \dfrac{5}{2} = \dfrac{3\sqrt{2}+5}{2} \end{align*}

Subsubsection Exercises

Simplify \(~\dfrac{8}{2\sqrt{2}}\)

Answer
\(2\sqrt{2}\)

Simplify \(~\sqrt{6} \cdot \dfrac{\sqrt{3}}{2\sqrt{2}}\)

Answer
\(\dfrac{3}{2}\)

Simplify \(~\dfrac{\sqrt{2}}{6} - \dfrac{2}{\sqrt{3}}\)

Answer
\(\dfrac{\sqrt{2}-4\sqrt{3}}{6}\)

Simplify \(~\dfrac{1}{\sqrt{6}} + \dfrac{3}{\sqrt{2}}\)

Answer
\(\dfrac{\sqrt{6}+9\sqrt{2}}{6}\)

Subsection 2. Use negative exponents

Recall that a negative exponent indicates a reciprocal.

Subsubsection Examples

Example 8.49.

Write each expression without negative exponents.

  1. \(\displaystyle \dfrac{1}{4}xy^{-2}\)
  2. \(\displaystyle a^{-3}b^{-2}\)
  3. \(\displaystyle \dfrac{2a^{-1}}{{bc}^{-2}}\)
  4. \(\displaystyle \dfrac{x}{y^{-2}}+\dfrac{x^{-2}}{y}\)
Solution

We use the fact that \(~a^{-n} = \dfrac{1}{a^n}\text{,}\) and consequently that \(~\dfrac{1}{a^{-n}} = a^n\text{.}\)

  1. \(\displaystyle \dfrac{x}{4y^2}\)
  2. \(\displaystyle \dfrac{1}{a^{3}b^{2}}\)
  3. \(\displaystyle \dfrac{2c^2}{ab}\)
  4. \(\displaystyle xy^{2}+\dfrac{1}{x^2y}\)
Example 8.50.

Simplify where possible using the laws of exponents.

  1. \(\displaystyle 3x^{-3}x^5\)
  2. \(\displaystyle \dfrac{4a^{-4}}{8a^{-8}}\)
  3. \(\displaystyle (2bc^{-3})^{-2}\)
  4. \(\displaystyle 3x^{-4}-2x^{-3}\)
Solution
  1. Add the exponents: \(~3x^{-3}x^5 = 3x^2\)
  2. Subtract the exponents: \(~\dfrac{4a^{-4}}{8a^{-8}} = \dfrac{1}{2}a^{-4-(-8)} = \dfrac{a^4}{2}\)
  3. Raise each factor to the power \(-2\text{.}\) Multiply exponents:

    \begin{equation*} (2bc^{-3})^{-2} = 2^{-2}b^{-2}(c^{-3})^{-2} = \dfrac{c^6}{4b^2} \end{equation*}
  4. We cannot add or subtract powers with different exponents.

    \begin{equation*} 3x^{-4}-2x^{-3} = \dfrac{3}{x^4} - \dfrac{2}{x^3} \end{equation*}

Subsubsection Exercises

Simplify where possible. Write your answer without negative exponents.

\begin{equation*} (2x^3y^{-4})(\dfrac{3}{4}x^{-2}y^2) \end{equation*}
Answer
\(\dfrac{3x}{2y^2}\)

Simplify where possible. Write your answer without negative exponents.

\begin{equation*} ~\dfrac{ab^{-3}}{(3ab)^{-2}} \end{equation*}
Answer
\(\dfrac{9a^3}{b}\)

Simplify where possible. Write your answer without negative exponents.

\begin{equation*} 2x^{-2}-(2x)^{-2} \end{equation*}
Answer
\(\dfrac{8x^4-1}{4x^2}\)

Simplify where possible. Write your answer without negative exponents.

\begin{equation*} 2x^{-2}(-2x)^{-2} \end{equation*}
Answer
\(\dfrac{1}{2}\)

Subsection 3. Check a division

Remember that division is the inverse operation for multiplication.

Subsubsection Examples

Example 8.55.

Check that the division is correct: \(~536\div 15 = 35\dfrac{11}{15}\)

Solution

The quotient tells us that 15 divides into 536 thirty-five times, with a remainder of 11. This in turn means that if we multiply 15 by 35, and then add 11, we should get 536 back again.

\begin{equation*} 15 \times 35 + 11 = 525 + 11 = 536 \end{equation*}

Note the pattern: divisor \(\times\) quotient \(+\) remainder \(=\) starting number

Example 8.56.

Check that the division is correct:

\begin{equation*} (3n^2+n-6)\div (n+2) = 3n-5 + \dfrac{4}{n+2} \end{equation*}
Solution

The answer tells us that \(n+2\) divides into \(3n^2+n-6\) to give a quotient of \(3n-5\text{,}\) with a remainder of 4. If we multiply \(n+2\) by \(3n-5\text{,}\) and then add 4, we should get \(3n^2+n-6\) back again.

\begin{equation*} (n+2)(3n-5)+4 = (3n^2+n-10)+4 = 3n^2-n-6 \end{equation*}

Subsubsection Exercises

Check the division.

\begin{equation*} 25 \div 4 = 6\dfrac{1}{4} \end{equation*}
Answer
\(4(6)+1=25\)

Check the division.

\begin{equation*} 1331 \div 28 = 47\dfrac{15}{28} \end{equation*}
Answer
\(28(47)+15=1331\)

Check the division.

\begin{equation*} (n^2+3n+6) \div (n+1) = n+2 +\dfrac{4}{n+1} \end{equation*}
Answer
\((n+1)(n+2)+4 = n^2+3n+6\)

Check the division.

\begin{equation*} (2x^3+7x^2+9x+40) \div (2x-3) = x^2+5x+12 + \dfrac{40}{2x-3} \end{equation*}
Answer
\((2x-3)(x^2+5x+12)+40 = 2x^3+7x^2+9x+40\)