Section 4.1 Quadratic Formula
Subsection 1. Multiply algebraic fractions
To multiply two fractions together, we multiply their numerators together, and multiply their denominators together. We can divide out any common factors in numerator and denominator before we multiply.
Subsubsection Examples
Example 4.1.
Multiply \(~\dfrac{1}{2}\left(\dfrac{P}{Q}\right)\)
Example 4.2.
Multiply \(~4 \left(\dfrac{b}{c}\right)\)
Example 4.3.
Multiply \(~\dfrac{t}{w} \cdot \dfrac{w}{3t^2}\)
Example 4.4.
Multiply \(~\dfrac{a}{2} \cdot \dfrac{1-b}{b}\)
Subsubsection Exercises
Checkpoint 4.5.
Multiply \(~\dfrac{3}{2a}\left(\dfrac{a^2}{6}\right)\)
\(\dfrac{a}{9}\)
Checkpoint 4.6.
Multiply \(~8\left(\dfrac{m}{4x^2}\right)\)
\(\dfrac{2m}{x^2}\)
Checkpoint 4.7.
Multiply \(~\dfrac{3}{4} \cdot \dfrac{t^2-2}{cw^2}\)
\(\dfrac{3t^2-6}{4cw^2}\)
Checkpoint 4.8.
Multiply \(~\dfrac{n}{n-1} \cdot \dfrac{p+1}{n^2}\)
\(\dfrac{p+1}{n^2-n}\)
Subsection 2. Add or subtract algebraic fractions
To add or subtract unlike fractions.
- Find the LCD for the fractions.
- Build each fraction to an equivalent one with the LCD as its denominator.
- Add or subtract the numerators. Keep the same denominator.
Subsubsection Examples
Example 4.9.
Subtract \(~\dfrac{2x}{w} - \dfrac{3x}{w}\)
These are like fractions, so we need only combine their numerators.
Example 4.10.
Subtract \(~\dfrac{3}{a} - \dfrac{a+2}{a}\)
These are like fractions, so we need only combine their numerators. Be careful to subtract both terms of the second numerator.
Example 4.11.
Add \(~2 + \dfrac{1}{x}\)
We write 2 as a fraction, \(\dfrac{2}{1}\text{,}\) and build it to the LCD, \(x\text{.}\)
Example 4.12.
Subtract \(~\dfrac{a}{2b} - \dfrac{3}{b^2}\)
We build each fraction to the LCD, \(2b^2\text{.}\)
Subsubsection Exercises
Checkpoint 4.13.
Subtract \(~\dfrac{4a}{b^2} - \dfrac{c}{b^2}\)
Checkpoint 4.14.
Subtract \(~\dfrac{p+2}{2q} - \dfrac{p-1}{2q}\)
Checkpoint 4.15.
Add \(~N + \dfrac{2}{N}\)
Checkpoint 4.16.
Add \(~\dfrac{2}{xy} - \dfrac{y}{3x}\)
Subsection 3. Simplify square roots
Be careful when simplifying radicals after extracting roots.
Subsubsection Example
Example 4.17.
Can you simplify the first expression into the second expression? (Decide whether the expressions are equivalent.)
- Is \(~~\sqrt{4+x^2}~~\) equivalent to \(~~2+x\text{?}\)
- Is \(~~\sqrt{\dfrac{x^2}{9}}~~\) equivalent to \(~~\dfrac{x}{3}~~\) for \(~x \ge 0\text{?}\)
- Is \(~~\sqrt{w-3}~~\) equivalent to \(~~\sqrt{w} - \sqrt{3}\text{?}\)
-
If the expressions are equivalent, they must be equal for every value of the variable. Let's test with \(x=3\text{.}\) Then
\begin{align*} \sqrt{4+x^2} \amp = \sqrt{4+9} = \sqrt{13} \approx 3.6\\ \text{but}~~~~~~~~~ 2+x \amp = 2+3 = 5 \end{align*}No, the expressions are not equivalent.
Because \(\left(\dfrac{x}{3}\right)^2 = \dfrac{x}{3} \cdot \dfrac{x}{3} = \dfrac{x^2}{3^2} = \dfrac{x^2}{9}\text{,}\) it is also true that \(\sqrt{\dfrac{x^2}{9}} = \dfrac{x}{3}\text{.}\) Yes, the expressions are equivalent.
-
Let \(w=16\text{.}\) Then
\begin{align*} \sqrt{w-3} \amp = \sqrt{16-3} = \sqrt{13} \approx 3.6\\ \text{but}~~~ \sqrt{w}-\sqrt{3} \amp = \sqrt{16}-\sqrt{3} \approx 4-1.7 = 2.3 \end{align*}No, the expressions are not equivalent.
Subsubsection Exercises
Decide whether the expressions are equivalent. Assume all variables are positive.
Checkpoint 4.18.
\(\sqrt{b^2-81}~\) and \(~b-9\)
Checkpoint 4.19.
\(\sqrt{64x^2y^2}~\) and \(~8xy\)
Checkpoint 4.20.
\(\sqrt{64+x^2y^2}~\) and \(~8+xy\)
Checkpoint 4.21.
\(\sqrt{\dfrac{c^2+d^2}{4b^2}}~\) and \(~\dfrac{\sqrt{c^2+d^2}}{2b}\)