Rational Function.
A rational function is one of the form
\begin{equation*}
f (x) =\frac{P(x)}{Q(x)}
\end{equation*}
where \(P(x)\) and \(Q(x)\) are polynomials and \(Q(x)\) is not the zero polynomial.
\(x\) | \(0\) | \(3\) | \(5\) | \(7\) | \(9\) | \(10\) |
\(t\) | \(4\) | \(5\) | \(6\) | \(7.5\) | \(10\) | \(12\) |
\(x\) | \(1\) | \(2\) | \(4\) | \(5\) | \(10\) | \(20\) |
\(C\) | \(105\) | \(55\) | \(40\) | \(25\) | \(15\) | \(10\) |
\(x\) | \(y\) |
\(0\) | \(\frac{2}{9}\) |
\(1\) | \(\frac{1}{2}\) |
\(2\) | \(2\) |
\(3\) | undefined |
\(4\) | \(2\) |
\(4\) | \(\frac{1}{2}\) |
\(6\) | \(\frac{2}{9}\) |
\(x\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(y\) |
\(x\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(y\) | \(\frac{1}{5}\) | \(\frac{-1}{3}\) | \(\frac{-1}{3}\) | \(\frac{1}{5}\) |
\(v\) | \(0\) | \(5\) | \(10\) | \(15\) | \(20\) | \(25\) | \(30\) | \(35\) | \(40\) | \(45\) | \(50\) |
\(t\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) |
\(v\) | \(0\) | \(4\) | \(8\) | \(12\) | \(16\) | \(20\) | \(24\) | \(28\) | \(32\) | \(36\) |
\(t\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00} \) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) |
\(p\) | \(0\) | \(15\) | \(25\) | \(40\) | \(50\) | \(75\) | \(80\) | \(90\) | \(100\) |
\(C\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) |
\(p\) | \(0\) | \(15\) | \(25\) | \(40\) | \(50\) | \(75\) | \(80\) | \(90\) | \(100\) |
\(C\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) |
\(n\) | \(100\) | \(200\) | \(400\) | \(500\) | \(1000\) | \(2000\) | \(4000\) | \(5000\) | \(8000\) |
\(C\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) |
\(p\) | \(0.25\) | \(0.50\) | \(1.00\) | \(1.25\) | \(1.50\) | \(1.75\) | \(2.00\) | \(2.25\) | \(2.50\) | \(2.75\) | \(3.00\) |
Demand | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) |
\(p\) | \(0.25\) | \(0.50\) | \(1.00\) | \(1.25\) | \(1.50\) | \(1.75\) | \(2.00\) | \(2.25\) | \(2.50\) | \(2.75\) | \(3.00\) |
Demand | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) |
Revenue | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) |
\(x\) | \(10\) | \(20\) | \(30\) | \(40\) | \(50\) | \(60\) | \(70\) | \(80\) | \(90\) | \(100\) |
\(C\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) |
\(x\) | \(10\) | \(20\) | \(30\) | \(40\) | \(50\) | \(60\) | \(70\) | \(80\) | \(90\) | \(100\) |
\(C\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) | \(\) |
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) |
\(h\) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) |
\(V\) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) |
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) |
\(h\) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) |
\(S\) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) |
\(v\) | \(-100\) | \(-75\) | \(-50\) | \(-25\) | \(0\) | \(25\) | \(50\) | \(75\) | \(100\) |
\(P\) | \(\) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\) |
\(v\) | \(100\) | \(200\) | \(300\) | \(400\) | \(500\) | \(600\) | \(700\) | \(800\) | \(900\) | \(1000\) |
\(h\) | \(\) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\hphantom{000} \) | \(\) | \(\) |
\(s\) | \(0.33\) | \(0.66\) | \(1.00\) | \(1.66\) | \(2.50\) | \(3.33\) | \(6.66\) |
\(v\) | \(0.08\) | \(0.14\) | \(0.20\) | \(0.30\) | \(0.39\) | \(0.46\) | \(0.58\) |