Skip to main content
Logo image

Modeling, Functions, and Graphs

Appendix E Properties of Numbers

Associative Laws.

Addition:
If \(a\text{,}\) \(b\text{,}\) and \(c\) are any numbers, then \((a + b) + c = a + (b + c)\text{.}\)
Multiplication
If \(a\text{,}\) \(b\text{,}\) and \(c\) are any numbers, then \((a\cdot b)\cdot c = a\cdot (b\cdot c)\text{.}\)

Commutative Laws.

Addition:
If \(a\) and \(b\) are any numbers, then \(a + b = b + a\text{.}\)
Multiplication
If \(a\) and \(b\) are any numbers, then \(a\cdot b = b\cdot a\text{.}\)

Distributive Law.

\(a(b + c) = ab + ac\) for any numbers \(a\text{,}\) \(b\text{,}\) and \(c\text{.}\)

Properties of Equality.

Addition:
If \(a = b\) and \(c\) is any number, then \(a + c = b + c\text{.}\)
Subtraction:
If \(a = b\) and \(c\) is any number, then \(a - c = b - c\text{.}\)
Multiplication
If \(a = b\) and \(c\) is any number, then \(a\cdot c = b\cdot c\text{.}\)
Division
If \(a = b\) and \(c\) is any nonzero number, then \(\frac{a}{c} =\frac{b}{c} \text{.}\)

Fundamental Principle of Fractions.

If \(a\) is any number, and \(b\) and \(c\) are nonzero numbers, then \(\displaystyle{\frac{a\cdot c}{b\cdot c}= \frac{a}{b}}\text{.}\)

Laws of Exponents.

  1. \(\displaystyle a^m\cdot a^n = a^{m+n}\)
    • \(\displaystyle \dfrac{a^m}{a^n}=a^{m-n} \hphantom{blank1}(n\lt m)\)
    • \(\displaystyle \displaystyle{\frac{a^m}{a^n}=\frac{1}{a^{n-m}} \hphantom{blank}(n\gt m)}\)
  2. \(\displaystyle \left(a^m\right)^n=a^{m+n}\)
  3. \(\displaystyle (ab)^n=a^n b^n\)
  4. \(\displaystyle \displaystyle{\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} }\)

Product Rule for Radicals.

If \(a\) and \(b\) are both nonnegative, then \(\sqrt{ab}=\sqrt{a}\sqrt{b} \text{.}\)

Quotient Rule for Radicals.

If \(a\ge 0\) and \(b\gt 0\text{,}\) then \(\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}} \text{.}\)

Zero-Factor Principle.

If \(ab= 0\) then either \(a= 0\) or \(b=0 \text{.}\)

Properties of Absolute Value.

\begin{equation*} \begin{aligned}[t] \abs{a + b} \le \abs{a} + \abs{b} \amp\amp \text{Triangle inequality}\\ \abs{a b} = \abs{a} \abs{b} \amp\amp \text{Multiplicative property } \end{aligned} \end{equation*}