Skip to main content
Logo image

Modeling, Functions, and Graphs

Appendix G Answers to Selected Exercises

1 Functions and Their Graphs
1.1 Linear Models
Homework 1.1

1.

Answer.
\(h\) \(0\) \(3\) \(6\) \(9\) \(10\)
\(T\) \(65\) \(80\) \(95\) \(110\) \(115\)
  1. \(\displaystyle T=65+5h\)
  2. graph of temperature vs time
  3. \(\displaystyle 95\degree\)
  4. 3 p.m.

3.

Answer.
\(w\) \(0\) \(4\) \(8\) \(12\) \(16\)
\(A\) \(250\) \(190\) \(130\) \(70\) \(10\)
  1. \(\displaystyle A=250-15w\)
  2. grid
  3. 75 gallons
  4. Until the fifth week

5.

Answer.
  1. \(\displaystyle P=-800+40t\)
  2. \((0,-800)\text{,}\) \((20,0)\)
    graph of profit vs hours
  3. The \(P\)-intercept, \(-800\text{,}\) is the initial \((t = 0)\) value of the profit. Phil and Ernie start out \(\$800\) in debt. The \(t\)-intercept, \(20\text{,}\) is the number of hours required for Phil and Ernie to break even.

7.

Answer.
  1. \(\displaystyle C=5000+0.125d\)
  2. Complete the table of values.
    Miles Driven \(4000\) \(8000\) \(12,000\) \(16,000\) \(20,000\)
    Cost ($) \(5500\) \(6000\) \(6500\) \(7000\) \(7500\)
  3. graph of cost vs miles driven
  4. $\(500\)
  5. More than 16,000 miles

9.

Answer.
plotted points

11.

Answer.
plotted points

13.

Answer.
  1. \(\displaystyle (8, 0), (0, 4)\)
  2. line

15.

Answer.
  1. \(\displaystyle (4, 0), (0, -3)\)
  2. line

17.

Answer.
  1. \(\displaystyle (9, 0), (0, -4)\)
  2. line

19.

Answer.
  1. \(\displaystyle (-2250, 0), (0, 1500)\)
  2. plotted points

21.

Answer.
  1. \(\displaystyle (12, 0), (0, 4)\)
  2. plotted points

23.

Answer.
  1. \(\displaystyle \left(\dfrac{3}{2} , 0\right), \left(0, \dfrac{11}{3} \right)\)
  2. line

25.

Answer.
  1. $\(2.40x,\) $\(3.20y\)
  2. \(\displaystyle 2.40x + 3.20y = 19,200\)
  3. line
  4. The \(y\)-intercept, \(6000\) gallons, is the amount of premium that the gas station owner can buy if he buys no regular. The \(x\)-intercept, \(8000\) gallons, is the amount of regular he can buy if he buys no premium.

27.

Answer.
  1. \(9x\) mg, \(4y\) mg
  2. \(\displaystyle 9x + 4y = 1800\)
  3. line
  4. The \(x\)-intercept, \(200\) grams, tells how much fig Delbert should eat if he has no bananas, and the \(y\)-intercept, \(450\) grams, tells how much banana he should eat if he has no figs.

29.

Answer.
  1. \(\displaystyle (3,0), (0,5) \)
  2. \(\displaystyle \left(\dfrac{1}{2},0\right), \left(0,\dfrac{-1}{4}\right) \)
  3. \(\displaystyle \left(\dfrac{5}{2},0\right), \left(0,\dfrac{-3}{2}\right) \)
  4. \(\displaystyle (p,0), (0,q) \)
  5. The value of \(a\) is the \(x\)-intercept, and the value of \(b\) is the \(y\)-intercept.

31.

Answer.
  1. \(\displaystyle (0, b)\)
  2. \(\left(\dfrac{-b}{m},0\right)\text{,}\) if \(m\ne 0\)

33.

Answer.
\(-2x + 3y = 2400\)

35.

Answer.
\(3x + 400y = 240\)

37.

Answer.
  1. \(\displaystyle y = 6 - 2x\)
  2. line

39.

Answer.
  1. \(\displaystyle y = \dfrac{3}{4}x-300\)
  2. line

41.

Answer.
  1. \(\displaystyle y = 0.02 - 0.04x\)
  2. line

43.

Answer.
  1. \(\displaystyle y = 210 - 35x\)
  2. line

45.

Answer.
  1. \(\displaystyle (100, 0), (0, 25)\)
  2. \(\displaystyle y = 25 - \dfrac{1}{4}x\)
  3. GC-line

47.

Answer.
  1. \(\displaystyle (0.04, 0), (0, -0.05)\)
  2. \(\displaystyle y = 1.25x - 0.05\)
  3. GC-line

49.

Answer.
  1. \(\displaystyle (-60, 0), (0, 12)\)
  2. \(\displaystyle y = 12 + \dfrac{1}{5}x\)
  3. GC-line

51.

Answer.
  1. \(\displaystyle (-42, 0), (0, -28)\)
  2. \(\displaystyle y = \dfrac{-2}{3}x-28\)
  3. GC-line

1.2 Functions
Homework 1.2

1.

Answer.
Function; the tax is determined by the price of the item.

3.

Answer.
Not a function; incomes may differ for same number of years of education.

5.

Answer.
Function; weight is determined by volume.

7.

Answer.
Input: items purchased; output: price of item. Yes, a function because each item has only one price.

9.

Answer.
Input: topics; output: page or pages on which topic occurs. No, not a function because the same topic may appear in more than one page.

11.

Answer.
Input: students’ names; output: students’ scores on quizzes, tests, etc. No, not a function because the same student can have different grades on different tests.

13.

Answer.
Input: person stepping on scales; output: person’s weight. Yes, a function because a person cannot have two different weights at the same time.

15.

Answer.
No

17.

Answer.
Yes

19.

Answer.
Yes

21.

Answer.
Yes

23.

Answer.
No

25.

Answer.
Yes

27.

Answer.
  1. \(\displaystyle 60\)
  2. \(\displaystyle 37.5\)
  3. \(\displaystyle 30\)

29.

Answer.
  1. \(\displaystyle 15\%\)
  2. \(\displaystyle 14\%\)
  3. $7010–$9169

31.

Answer.
  1. \(67.7\text{:}\) In 1985, \(67.7\%\) of 20–24 year old women had not yet had children.
  2. 1987: Approximately \(68\%\) of 20–24 year old women had not yet had children in 1987.
  3. \(\displaystyle f (1997) = 64.9\)

33.

Answer.
  1. No
  2. 60; no
  3. Decreasing

35.

Answer.
  1. 1991
  2. 1 yr
  3. 1 yr
  4. About 7300

37.

Answer.
  1. Approximately $\(1920\)
  2. $\(5\) or $\(15\)
  3. \(\displaystyle 7.50\lt d\lt 12.50\)

39.

Answer.
  1. 1968, about $\(8.70\)
  2. 1989, about $\(5.10\)
  3. 1967, approximately 1970

41.

Answer.
  1. \(\displaystyle 0\)
  2. \(\displaystyle 10\)
  3. \(\displaystyle -19.4\)
  4. \(\displaystyle \dfrac{14}{3} \)

43.

Answer.
  1. \(\displaystyle 1\)
  2. \(\displaystyle 6\)
  3. \(\displaystyle \dfrac{3}{8}\)
  4. \(\displaystyle 96.48 \)

45.

Answer.
  1. \(\displaystyle \dfrac{5}{6} \)
  2. \(\displaystyle 9\)
  3. \(\displaystyle \dfrac{-1}{10}\)
  4. \(\displaystyle \dfrac{12}{13}\approx 0.923 \)

47.

Answer.
  1. \(\displaystyle \sqrt{12} \)
  2. \(\displaystyle 0\)
  3. \(\displaystyle \sqrt{3}\)
  4. \(\displaystyle \sqrt{0.2}\approx 0.447 \)

49.

Answer.
  1. \(V(12) = 1120\text{:}\) After 12 years, the SUV is worth $\(1120\text{.}\)
  2. \(t = 12.5\text{:}\) The SUV has zero value after \(12\frac{1}{2}\) years.
  3. The value 2 years later

51.

Answer.
  1. \(N(6000) = 2000\text{:}\) \(2000\) cars will be sold at a price of $\(6000\text{.}\)
  2. \(N(p)\) decreases with increasing \(p\) because fewer cars will be sold when the price increases.
  3. \(2N(D)\) represents twice the number of cars that can be sold at the current price.

53.

Answer.
  1. \(v(250) = 54.8\) is the speed of a car that left \(250\)-foot skid marks.
  2. \(833\dfrac{1}{3}\) feet
  3. \(\displaystyle v\left(833\dfrac{1}{3}\right)= 100\)

55.

Answer.
  1. June 21–24, June 29–July 3, July 8–14
  2. June 17–21, June 25–29, July 4–7
  3. June 22–24, June 27, June 29–July 4, July 8–14
  4. Avalanches occur when temperatures rise above freezing immediately after snowfall.

57.

Answer.
  1. No
  2. Yes
  3. Moving downwards on the graph corresponds to moving downwards in the ocean.

59.

Answer.
  1. \(\displaystyle 27a^2 - 18a\)
  2. \(\displaystyle 3a^2 + 6a\)
  3. \(\displaystyle 3a^2 - 6a + 2\)
  4. \(\displaystyle 3a^2 + 6a \)

61.

Answer.
  1. \(\displaystyle 8\)
  2. \(\displaystyle 8\)
  3. \(\displaystyle 8\)
  4. \(\displaystyle 8 \)

63.

Answer.
  1. \(\displaystyle 8x^3 - 1\)
  2. \(\displaystyle 2x^3 - 2\)
  3. \(\displaystyle x^6 - 1\)
  4. \(\displaystyle x^6 - 2x^3 + 1 \)

65.

Answer.
  1. \(\displaystyle a^6\)
  2. \(\displaystyle a^{12}\)
  3. \(\displaystyle a^3b^3\)
  4. \(\displaystyle a^3 + 3a^2b + 3ab^2 + b^3 \)

67.

Answer.
  1. \(\displaystyle 96a^5\)
  2. \(\displaystyle 6a^5\)
  3. \(\displaystyle 3a^{10}\)
  4. \(\displaystyle 9a^{10} \)

69.

Answer.
  1. \(\displaystyle 11\)
  2. \(\displaystyle 13\)
  3. \(\displaystyle 3a + 3b - 4\)
  4. \(\displaystyle 3a + 3b - 2 \)
This function does NOT satisfy \(f (a + b) = f (a) + f (b)\text{.}\)

71.

Answer.
  1. \(\displaystyle 19\)
  2. \(\displaystyle 28\)
  3. \(\displaystyle a^2 + b^2 + 6\)
  4. \(\displaystyle a^2 + 2ab + b^2 + 3 \)
This function does NOT satisfy \(f (a + b) = f (a) + f (b)\text{.}\)

73.

Answer.
  1. \(\displaystyle \sqrt{3}+2 \)
  2. \(\displaystyle \sqrt{6} \)
  3. \(\displaystyle \sqrt{a+1}+\sqrt{b+1} \)
  4. \(\displaystyle \sqrt{a+b+1} \)
This function does NOT satisfy \(f (a + b) = f (a) + f (b)\text{.}\)

75.

Answer.
  1. \(\displaystyle \dfrac{-5}{3} \)
  2. \(\displaystyle \dfrac{-2}{5} \)
  3. \(\displaystyle \dfrac{-2}{a}-\dfrac{-2}{b} \)
  4. \(\displaystyle \dfrac{-2}{a+b} \)
This function does NOT satisfy \(f (a + b) = f (a) + f (b)\text{.}\)

77.

Answer.
  1. \(x\) \(0\) \(10\) \(20\) \(30\) \(40\) \(50\) \(60\) \(70\) \(80\) \(90\) \(100\)
    \(f(x)\) \(800\) \(840\) \(840\) \(800\) \(720\) \(600\) \(440\) \(240\) \(0\) \(-280\) \(-600\)
    \(a = 50\) and \(b = 60\)
  2. \(x\) \(50\) \(51\) \(52\) \(53\) \(54\) \(55\) \(56\) \(57\) \(58\)
    \(f(x)\) \(600\) \(585.8\) \(571.2\) \(556.2\) \(540.8\) \(525\) \(508.8\) \(492.2\) \(475.2\)
    \(c = 56\) and \(d = 57\)
  3. \(x\) \(56\) \(56.1\) \(56.2\) \(56.3\) \(56.4\) \(56.5\) \(56.6\)
    \(f(x)\) \(508.8\) \(507.158\) \(505.512\) \(503.862\) \(502.208\) \(500.55\) \(498.888\)
    \(p = 56.5\) and \(q = 56.6\)
  4. \(\displaystyle s = 56.55\)
  5. \(\displaystyle f (56.55) = 499.7195\)

79.

Answer.
\(94.85\)

1.3 Graphs of Functions
Homework 1.3

1.

Answer.
  1. \(\displaystyle -2, 0,5\)
  2. \(\displaystyle 2\)
  3. \(\displaystyle h(-2)=0,~h(1)=0,~h(0)=-2\)
  4. \(\displaystyle 5\)
  5. \(\displaystyle 3\)
  6. Increasing: \((-3,0)\) and \((1,3)\text{;}\) decreasing: \((0,1)\) and \((3,5)\)

3.

Answer.
  1. \(\displaystyle -1, 2\)
  2. \(\displaystyle 3, -1.3\)
  3. \(R(-2) = 0\text{,}\) \(R(2) = 0\text{,}\) \(R(4) = 0\text{,}\) \(R(0) = 4\)
  4. Max: \(4\text{;}\) min: \(-5\)
  5. Max at \(p = 0\text{;}\) min at \(p = 5\)
  6. Increasing: \((-3, 0)\) and \((1, 3)\text{;}\) decreasing: \((0, 1)\) and \((3, 5)\)

5.

Answer.
  1. \(\displaystyle 0, \dfrac{1}{2}, 0\)
  2. \(\displaystyle 0.9\)
  3. \(\dfrac{-5}{6}\text{,}\) \(\dfrac{-1}{6}\text{,}\) \(\dfrac{7}{6}\text{,}\) \(\dfrac{11}{6}\)
  4. Max: \(1\text{;}\) min: \(-1\)
  5. Max at \(x=-1.5, 0.5\text{;}\) min at \(x=-0.5, 1.5\)

7.

Answer.
  1. \(\displaystyle 2, 2, 1\)
  2. \(-6 \le s \lt -4~\) or \(~0\le s\lt 2\)
  3. Max: \(2\text{;}\) min: \(-1\)
  4. Max for \(-3\le s\lt -1~\) or \(~3\le s\lt 5\text{;}\) min for \(-6\le s\lt -4~\) or \(~0\le s\lt 2\)

9.

Answer.
(a) and (d)

11.

Answer.
cubic

13.

Answer.
square root

15.

Answer.
cubic

17.

Answer.
  1. \(f (1000) = 1495\text{:}\) The speed of sound at a depth of \(1000\) meters is approximately \(1495\) meters per second.
  2. \(d = 570\) or \(d = 1070\text{:}\) The speed of sound is \(1500\) meters per second at both a depth of \(570\) meters and a depth of \(1070\) meters.
  3. The slowest speed occurs at a depth of about \(810\) meters and the speed is about \(1487\) meters per second, so \(f (810) = 1487\text{.}\)
  4. \(f\) increases from about \(1533\) to \(1541\) in the first \(110\) meters of depth, then drops to about \(1487\) at \(810\) meters, then rises again, passing \(1553\) at a depth of about \(1600\) meters.

19.

Answer.
  1. \(f(1985)=41\text{:}\) The federal debt in \(1985\) was about \(41\%\) of the gross domestic product.
  2. \(t = 1942\) or \(t = 1955\text{:}\) The federal debt was \(70\%\) of the gross domestic product in \(1942\) and \(1955\text{.}\)
  3. In about \(1997\text{,}\) the debt was about \(67\%\) of the gross domestic product, so \(f (1997)\approx 67.3\text{.}\)
  4. The percentage basically dropped from 1946 to 1973, but there were small rises around 1950, 1954, 1958, and 1968, so the longest time interval was from 1958 to 1967.

21.

Answer.
    1. \(\displaystyle x = -3\)
    2. \(\displaystyle x\lt -3\)
    3. \(\displaystyle x\gt -3\)
    1. \(\displaystyle x = -3\)
    2. \(\displaystyle x\lt -3\)
    3. \(\displaystyle x\gt -3\)
  1. On the graph of \(y=-2x + 6\text{,}\) a value of \(y\) is the same as a value of \(-2x + 6\text{,}\) so parts (a) and (b) are asking for the same \(x\)’s.

23.

Answer.
  1. \(\displaystyle x = 0.6\)
  2. \(\displaystyle x=-0.4\)
  3. \(\displaystyle x\gt 0.6\)
  4. \(\displaystyle x\lt -0.4\)

25.

Answer.
  1. \(x=-1\) or \(x = 1\)
  2. Approximately \(-3\le x\le -2\) or \(2\le x\le 3\)

27.

Answer.
  1. \(\displaystyle 3.5\)
  2. \(\displaystyle -2.2, -1.2, 3.4\)
  3. \(p\lt -3.1\) or \(0.3\lt p\lt 2.8\)
  4. \(\displaystyle 0.5\lt B\lt 5.5\)
  5. \(p\lt -1.7\) or \(p\gt 1.7\)

29.

Answer.
    1. \(\displaystyle -2, 2\)
    2. \(\displaystyle -2.8, 0, 2.8\)
    3. \(-2.5\lt q\lt-1.25\) or \(1.25\lt q\lt 2.5\)
  1. \(-2 \lt q\lt 0\) or \(q\gt 2\)

31.

Answer.
  1. He has an error: \(f(-3)\) cannot have both the value \(5\) and also the value \(-2\text{,}\) and \(f(-1)\) cannot have both values \(2\) and \(-4\text{.}\)
  2. Her readings are possible for a function: each input has only one output.

33.

Answer.
  1. \(x\) \(-4\) \(-2\) \(3\) \(5\)
    \(g(x)\) \(4.5\) \(5.7\) \(5.2\) \(3.3\)
  2. \(\displaystyle -4.8, 4.8\)

35.

Answer.
  1. \(\displaystyle (-1.6, 4.352), (1.6, -4.352)\)
  2. \(F(-1.6) = 4.352\text{;}\) \(F(1.6) = -4.352\)

37.

Answer.
  1. standard GC window
  2. curve visible in GC window
    The curve cannot be distinguished from the \(x\)-axis in the standard window because the values of \(y\) are closer to zero than the resolution of the calculator can display. The second window provides sufficient resolution to see the curve.

39.

Answer.
  1. standard GC window
  2. curve visible in GC window
    The curve looks like two vertical lines in the standard window because that window covers too small a region of the plane. The second window allows us to see the turning points of the curve.

41.

Answer.
  1. \(\displaystyle x = 4\)
  2. \(\displaystyle x = -5\)
  3. \(\displaystyle x\gt 1\)
  4. \(\displaystyle x\lt 14 \)

43.

Answer.
  1. \(\displaystyle x = 11\)
  2. \(\displaystyle x = -10\)
  3. \(\displaystyle x\ge -5\)
  4. \(\displaystyle x\le 8 \)

45.

Answer.
  1. \(\displaystyle x = 4 \)
  2. \(\displaystyle x\lt 22 \)

47.

Answer.
  1. \(\displaystyle x = 20 \)
  2. \(\displaystyle x\le 7 \)

49.

Answer.
  1. \(\displaystyle -15, 5, 20 \)
  2. \(\displaystyle -13, 2, 22 \)

1.4 Slope and Rate of Change
Homework 1.4

1.

Answer.
Anthony

3.

Answer.
Bob’s driveway

5.

Answer.
\(-1\)

7.

Answer.
\(\dfrac{-2}{3}\)

9.

Answer.
  1. 3x-4y=12
  2. \(\displaystyle \dfrac{3}{4} \)

11.

Answer.
  1. 2x+6y=-18
  2. \(\displaystyle -3\)

13.

Answer.
  1. x/5-y/8=1
  2. \(\displaystyle \dfrac{8}{5} \)

15.

Answer.
  1. vertical and horizontal changes between two points on line
  2. vertical and horizontal changes between two points on line
  3. vertical and horizontal changes between two points on line

17.

Answer.
    1. \(\displaystyle -3\)
    2. \(\displaystyle 6\)
    3. \(\displaystyle \dfrac{-3}{2} \)
    4. \(\displaystyle \dfrac{9}{2}\)
    1. \(\displaystyle -4\)
    2. \(\displaystyle 8\)
    3. \(\displaystyle \dfrac{8}{3} \)
    4. \(\displaystyle \dfrac{4}{3}\)

19.

Answer.
\(\dfrac{100}{7}\) ft \(\approx 14.286\) ft \(\approx 14\) ft \(~3.4\) in

21.

Answer.
  1. IV
  2. III
  3. II
  4. I

23.

Answer.
\(\dfrac{3}{4} \)

25.

Answer.
\(-4000\)

27.

Answer.
  1. \(\displaystyle \dfrac{5}{2} \)
  2. \(x\) \(y\)
    \(3\) \(\frac{7}{2}\)
    \(6\) \(11\)

29.

Answer.
  1. \(\displaystyle -3 \)
  2. \(x\) \(y\)
    \(-1\) \(\alert{30}\)
    \(\alert{5}\) \(12\)

31.

Answer.
  1. \(t\) \(4\) \(8\) \(20\) \(40\)
    \(S\) \(32 \) \(64\) \(160\) \(320\)
  2. salary graph
  3. 8 dollars/hour
  4. The typist is paid $\(8\) per hour.

33.

Answer.
  1. \(1250\) barrels/day
  2. The slope indicates that oil is pumped at a rate of \(1250\) barrels per day.

35.

Answer.
  1. \(-6\) liters/day
  2. The slope indicates that the water is diminishing at a rate of \(6\) liters per day.

37.

Answer.
  1. \(12\) inches/foot
  2. The slope gives the conversion rate of 12 inches per foot.

39.

Answer.
  1. \(4\) dollars/kilogram
  2. The slope gives the unit price of \(\$4\) per kilogram

41.

Answer.
(a)

43.

Answer.
  1. Yes, the slope between any two points is \(\frac{1}{2}\text{.}\)
  2. \(0.5\) grams of salt per degree Celsius

45.

Answer.
  1. Yes
  2. \(\displaystyle 2\pi\)

47.

Answer.
  1. \(\displaystyle \dfrac{1500\text{ meters}}{1 \text{ second}} \)
  2. \(3375\) meters

49.

Answer.
  1. The distances are known.
  2. \(5.7\) km per second

51.

Answer.
  1. About \(18\degree\)C
  2. 0.3 km to 0.4 km
  3. About \(-28\degree\)C per kilometer

53.

Answer.
  1. \(\displaystyle -3\)
    segment joining two points on curve
  2. \(\displaystyle 2\)
    segment joining two points on curve

55.

Answer.
  1. \(\displaystyle \dfrac{-1}{4} \)
    segment joining two points on curve
  2. \(\displaystyle -1\)
    segment joining two points on curve

57.

Answer.
  1. \((1,F(1)),(4,F(4))\text{;}\) \(~~~~F(4) - F(1)\)
  2. \((r,f(r)),(s,f(s))\text{;}\) \(~~~~f(s) - f(r)\)

59.

Answer.
  1. \((2,H(2)),(3,H(3))\text{;}\) \(~~~~H(3) - H(2)\)
  2. \((a,g(a)),(b,g(b))\text{;}\) \(~~~~g(b) - g(a)\)

61.

Answer.
  1. \((c,s(c)),(d,s(d))\text{;}\) \(~~~~s(c)(d - c)\)
  2. \((x_1,q(x_1)),(x_2,q(x_2))\text{;}\) \(~~~~q(x_2)(x_2 - x_1)\)

63.

Answer.
  1. \((1, f (1)), (5, f (5))\text{;}\) \(~~~~\dfrac{f (5) - f (1)}{4}\)
  2. \((-1, f (-1)), (2, f (2))\text{;}\) \(~~~~\dfrac{f (2) - f (-1)}{3}\)

65.

Answer.
  1. \((a, f (a)), (b, f (b))\text{;}\) \(~~~~\dfrac{f(b) - f(a)}{b-a}\)
  2. \((a, f (a)), (a+\Delta x, f(a+\Delta x))\text{;}\) \(~~~~\dfrac{f(a+\Delta x) - f(a)}{\Delta x}\)

1.5 Linear Functions
Homework 1.5

1.

Answer.
  1. \(\displaystyle y = \dfrac{1}{2}- \dfrac{3}{2}x\)
  2. Slope \(\dfrac{-3}{2}\text{,}\) \(y\)-intercept \(\dfrac{1}{2} \)

3.

Answer.
  1. \(\displaystyle y = \dfrac{1}{9}- \dfrac{1}{6}x\)
  2. Slope \(\dfrac{-1}{6}\text{,}\) \(y\)-intercept \(\dfrac{1}{9} \)

5.

Answer.
  1. \(\displaystyle y = -22 + 14x\)
  2. Slope \(14\text{,}\) \(y\)-intercept \(-22 \)

7.

Answer.
  1. \(\displaystyle y = -29\)
  2. Slope \(0\text{,}\) \(y\)-intercept \(-29 \)

9.

Answer.
  1. \(\displaystyle y =\dfrac{49}{3}-\dfrac{5}{3}x \)
  2. Slope \(\dfrac{-5}{3}\text{,}\) \(y\)-intercept \(\dfrac{49}{3} \)

11.

Answer.
  1. m = 3 and b = -2
  2. \(\displaystyle y = -2 + 3x\)
  3. \(\displaystyle \dfrac{2}{3} \)

13.

Answer.
  1. m = -5/3 and b = -6
  2. \(\displaystyle y = -6 + \dfrac{5}{3}x\)
  3. \(\displaystyle \dfrac{-18}{5} \)

15.

Answer.
\(5\)

17.

Answer.
\(\dfrac{-1}{4} \)

19.

Answer.
\(m =\dfrac{-A}{B}\text{,}\) \(x\)-intercept \(\left(\dfrac{C}{A},0\right) \text{,}\) \(y\)-intercept \(\left(0,\dfrac{C}{B}\right) \)

21.

Answer.
  1. \(\displaystyle a = 100 + 150t\)
  2. The slope tells us that the skier’s altitude is increasing at a rate of \(150\) feet per minute, the vertical intercept that the skier began at an altitude of \(200\) feet.

23.

Answer.
  1. \(\displaystyle G = 25 + 12.5t\)
  2. The slope tells us that the garbage is increasing at a rate of \(12.5\) tons per year, the vertical intercept that the dump already had \(25\) tons (when the new regulations went into effect).

25.

Answer.
  1. \(\displaystyle M = 7000 - 400w\)
  2. The slope tells us that Tammy’s bank account is diminishing at a rate of $\(400\) per week, the vertical intercept that she had $\(7000\) (when she lost all sources of income).

27.

Answer.
  1. \(50\degree\)F
  2. \(-20\degree\)C
  3. GC graph
  4. The slope, \(\frac{9}{5} = 1.8\text{,}\) tells us that Fahrenheit temperatures increase by \(1.8\degree\) for each increase of \(1\degree\) Celsius.
  5. \(C\)-intercept \(\left(-17\frac{7}{9}, 0\right)\text{:}\) \(-17\frac{7}{9}\degree\) C is the same as \(0\degree\)F; \(F\)-intercept \((0, 32)\text{:}\) \(0\degree\)C is the same as \(32\degree\)F.

29.

Answer.
  1. Fahrenheit vs gas mark
  2. \(\displaystyle m = 25, ~b = 250\)
  3. \(\displaystyle y = 250 + 25x\)

31.

Answer.
  1. spring length vs weight
  2. \(\displaystyle y = 0.12x + 25.4\)
  3. \(18\) kg

33.

Answer.
  1. line with given point and slope
  2. \(\displaystyle y + 5 = -3(x - 2)\)
  3. \(\displaystyle y = 1 - 3x\)

35.

Answer.
  1. line with given point and slope
  2. \(\displaystyle y + 1 = \frac{5}{3}(x - 2)\)
  3. \(\displaystyle y = \frac{-13}{3} + \frac{5}{3}x\)

37.

Answer.
  1. \(\displaystyle y + 3.5 = -0.25(x + 6.4)\)
  2. \(\displaystyle y = -5.1 - 0.25x\)
  3. line with given point and slope

39.

Answer.
  1. \(\displaystyle y + 250 = 2.4(x - 80)\)
  2. \(\displaystyle y = -442 + 2.4x\)
  3. line with given point and slope

41.

Answer.
  1. \(\displaystyle m =\dfrac{2}{3}\)
  2. \(\displaystyle y=\dfrac{-1}{3}+ \dfrac{2}{3}x\)

43.

Answer.
  1. \((-4, 4)\text{:}\) neither; \((0, 3)\text{:}\) \(y = px + q\text{;}\) \((3, 2)\text{:}\) both; \((2, 1)\text{:}\) neither; \((1,-2)\text{:}\) \(y = tx + v\)
  2. \(p =\dfrac{-1}{3}\text{,}\) \(q = 3\text{,}\) \(t = 2\text{,}\) \(v = -4\)

45.

Answer.
  1. \(\displaystyle m = 4, ~b = 40\)
  2. \(\displaystyle y = 40 + 4x\)

47.

Answer.
  1. \(\displaystyle m = -80, ~b = -2000\)
  2. \(\displaystyle P = -2000 - 80t\)

49.

Answer.
  1. \(\displaystyle m = \dfrac{1}{4}, ~b = 0\)
  2. \(\displaystyle V = \dfrac{1}{4}d\)

51.

Answer.
  1. \(y = \dfrac{3}{4}x\text{,}\) \(y = 1 + \dfrac{3}{4}x\text{,}\) \(y = -2.7 + \dfrac{3}{4}x\)
  2. 3 lines of slope 3/4
    The lines are parallel.

53.

Answer.
  1. II
  2. III
  3. I
  4. IV

55.

Answer.
  1. III
  2. IV
  3. II
  4. I

57.

Answer.
\(m = 2\text{;}\) \((6,-1)\)

59.

Answer.
\(m =\dfrac{-4}{3} \text{;}\) \((-5, 3)\)

61.

Answer.
  1. four lines through the same point
  2. The lines with slope \(3\) and \(\frac{-1}{3}\) are perpendicular to each other, and the lines with slope \(-3\) and \(\frac{1}{3}\) are perpendicular to each other.

63.

Answer.
\(m = -0.0018\) degree/foot, so the boiling point drops with altitude at a rate of \(0.0018\) degree per foot. \(b = 212\text{,}\) so the boiling point is \(212\degree\) at sea level (where the elevation \(h = 0\)).

1.6 Linear Regression
Homework 1.6

1.

Answer.
  1. \(x\) \(50\) \(125\)
    \(y\) \(9000\) \(15,000\)
  2. \(\displaystyle C = 5000 + 80x\)
  3. \(m = 80\) dollars/bike, so it costs the company $\(80\) per bike it manufactures.

3.

Answer.
  1. \(g\) \(12\) \(5\)
    \(d\) \(312\) \(130\)
  2. \(\displaystyle d = 26g\)
  3. \(m = 26\) miles/gallon, so the Porche’s fuel efficiency is \(26\) miles per gallon.

5.

Answer.
  1. \(C\) \(15\) \(-5\)
    \(F\) \(59\) \(23\)
  2. \(\displaystyle F=32+\dfrac{9}{5}C \)
  3. \(m =\dfrac{9}{5} \text{,}\) so an increase of \(1\degree\)C is equivalent to an increase of \(\dfrac{9}{5}\degree\)F.

7.

Answer.
scatterplot and line

9.

Answer.
scatterplot and line

11.

Answer.
  1. \(12\) seconds
  2. \(\displaystyle 39\)
  3. scatterplot with regression line
  4. \(11.6\) seconds
  5. \(\displaystyle y = 8.5 + 0.1x\)
  6. \(12.7\) seconds; \(10.18\) seconds; The prediction for the 40-year-old is reasonable, but not the prediction for the 12-year-old.

13.

Answer.
  1. scatterplot with regression line
  2. \(\displaystyle y = 121 + 19.86t\)
  3. \(\displaystyle 419 \)

15.

Answer.
  1. scatterplot with regression line
  2. \(\displaystyle y = 64.2 - 1.63t\)
  3. \(58\) births per \(1000\) women
  4. \(32\) births per \(1000\) women

17.

Answer.
  1. scatterplot with regression line
  2. \(\displaystyle y = 0.18t + 67.9\)
  3. \(74.9\) years
  4. \(79\) years

19.

Answer.
  1. scatterplot with regression line
  2. \(\displaystyle y = 90.49t - 543.7\)
  3. \(90.49\) dollars/year: Each additional year of education corresponds to an additional $\(90.49\) in weekly earnings.
  4. No: The degree or diploma attained is more significant than the number of years. So, for example, interpolation for the years of education between a bachelor’s and master’s degree may be inaccurate because earnings with just the bachelor’s degree will not change until the master’s degree is attained. And the years after the professional degree will not add significantly to earnings, so extrapolation is inappropriate.

21.

Answer.
  1. scatterplot with regression line
  2. \(\displaystyle y = 1.6 + 0.11t\)
  3. \(6.2\) billion tons

23.

Answer.
  1. \(0.34\) meters per year
  2. \(y = 0.34x\) (\(b = 0\) because the plant has zero size until it begins.)
  3. Over \(1300\) years

25.

Answer.
  1. scatterplot with regression line
  2. Yes
  3. \(\displaystyle y = 1.29x - 1.62\)
  4. The slope, \(1.29\) kg/sq cm, tells us that strength increases by \(1.29\) kg when the muscle cross-sectional area increases by \(1\) sq cm.

27.

Answer.
  1. E
  2. scatterplot with regression line
  3. \(y = 1.33x\text{;}\) There should be no loss in mass when no gas evaporates.
  4. \(1333\) mg
  5. Oxygen

29.

Answer.
  1. \(75\degree\)F
  2. The slope of \(-2\) degrees/hour says that temperatures are dropping at a rate of \(2\degree\) per hour.

31.

Answer.
  1. \(20\) mph
  2. The slope of \(10\) mph/second says the car accelerates at a rate of \(10\) mph per second.

33.

Answer.
2 min: \(21\degree\)C; 2 hr: \(729\degree\)C; The estimate at 2 minutes is reasonable; the estimate at 2 hours is not reasonable.

35.

Answer.
\(128\) lb.

37.

Answer.
  1. \(\displaystyle y \approx -0.54x + 58.7\)
    scatterplot with regression line
  2. \(\displaystyle 31.7\%\)
  3. \(90\) meters
  4. The regression line gives a negative probability, which is not reasonable.

39.

Answer.
  1. scatterplot and regression line
    \(\displaystyle y \approx 22.8x + 198.5\)
  2. \(\approx 540\) watts
  3. \(198.5\) watts
  4. \(\approx -8.7\) newtons
  5. \(3.5\) watts
  6. about \(0.018\) or \(1.8\%\)

1.7 Chapter Summary and Review
Chapter 1 Review Problems

1.

Answer.
  1. \(n\) \(100\) \(500\) \(800\) \(1200\) \(1500\)
    \(C\) \(4000\) \(12,000\) \(18,000\) \(26,000\) \(32,000\)
  2. \(\displaystyle C = 20n + 2000\)
  3. cost vs number
  4. $\(22,000\)
  5. \(\displaystyle 400\)

3.

Answer.
  1. \(\displaystyle R = 2100 - 28t\)
  2. \((75, 0)\text{,}\) \((0, 2100)\)
  3. \(t\)-intercept: The oil reserves will be gone in 2080; \(R\)-intercept: There were \(2100\) billion barrels of oil reserves in 2005.

5.

Answer.
  1. \(\displaystyle 2C + 5A = 1000\)
  2. \((500, 0)\text{,}\) \((0, 200)\)
    Adult tickets vs Children’s tickets
  3. \(C\)-intercept: If no adult tickets are sold, he must sell \(500\) children’s tickets; \(A\)-intercept: If no children’s tickets are sold, he must sell \(200\) adult tickets.

7.

Answer.
line in fourth quadrant

9.

Answer.
line in second quadrant

11.

Answer.
line through origin

13.

Answer.
vertical line

15.

Answer.
A function: Each \(x\) has exactly one associated \(y\)-value.

17.

Answer.
Not a function: The IQ of \(98\) has two possible SAT scores.

19.

Answer.
\(N(10) = 7000\text{:}\) Ten days after the new well is opened, the company has pumped a total of \(7000\) barrels of oil.

21.

Answer.
Function

23.

Answer.
Not a function

25.

Answer.
\(F(0) = 1, ~~F(-3) =\sqrt{37}\)

27.

Answer.
\(h(8) = -6, ~~h(-8) = -14\)

29.

Answer.
  1. \(\displaystyle f (-2) = 3, ~~f (2) = 5\)
  2. \(\displaystyle t = 1, ~~t = 3\)
  3. \(t\)-intercepts \((-3, 0), (4, 0)\text{;}\) \(f (t)\)-intercept: \((0, 2)\)
  4. Maximum value of \(5\) occurs at \(t = 2\)

31.

Answer.
  1. \(\displaystyle x = \dfrac{1}{2}= 0.5\)
  2. \(\displaystyle x = \dfrac{27}{8}\approx 3.4\)
  3. \(\displaystyle x \gt 4.9\)
  4. \(\displaystyle x\le 2.0\)

33.

Answer.
  1. \(\displaystyle x\approx\pm 5.8 \)
  2. \(\displaystyle x = \pm 0.4\)
  3. \(-2.5\lt x \lt 0\) or \(0\lt x\lt 2.5\)
  4. \(x\le -0.5\) or \(x\ge 0.5\)

35.

Answer.
\(H(2a) =4a^2 + 4a, ~~H(a+1) =a^2+4a+3\)

37.

Answer.
\(f (a) + f (b) = 2a^2 + 2b^2 - 8, ~~f (a + b) = 2a^2 + 4ab + 2b^2 - 4\)

39.

Answer.
The volleyball

41.

Answer.
Highway 33

43.

Answer.
  1. \(\displaystyle B = 800 - 5t\)
  2. GC graph
  3. \(m = -5\) thousand barrels/minute: The amount of oil in the tanker is decreasing by \(5000\) barrels per minute.

45.

Answer.
  1. \(\displaystyle F = 500 + 0.10C\)
  2. GC graph
  3. \(m = 0.10\text{:}\) The fee increases by \(\$0.10\) for each dollar increase in the remodeling job.

47.

Answer.
\(\dfrac{-3}{2} \)

49.

Answer.
\(\dfrac{-34}{83}\approx-0.4 \)

51.

Answer.
\(80\) ft

53.

Answer.
  1. \(\displaystyle h(x_2) - h(x_1)\)
  2. \(\displaystyle \dfrac{h(x_2) - h(x_1)}{x_2 - x_1} \)

55.

Answer.
Neither

57.

Answer.
\(d\) \(V\)
\(-5\) \(-4.8\)
\(-2\) \(-3\)
\(1\) \(-1.2\)
\(6\) \(1.8\)
\(10\) \(4.2 \)

59.

Answer.
\(m = \dfrac{1}{2}, ~b =\dfrac{-5}{4}\)

61.

Answer.
\(m = -4, ~b = 3\)

63.

Answer.
  1. line
  2. \(\displaystyle y = \dfrac{10}{3}- \dfrac{2}{3}x\)

65.

Answer.
  1. \(\displaystyle m = -2, ~b = 3\)
  2. \(\displaystyle y = 3 - 2x\)

67.

Answer.
\(\dfrac{3}{5} \)

69.

Answer.
  1. \(\displaystyle \dfrac{3}{2} \)
  2. \((4,2)\text{,}\) no
  3. \(\displaystyle (6,5)\)

71.

Answer.
\((3,-14), ~(-7, 2)\)

73.

Answer.
  1. \(\displaystyle T = 62 - 0.0036h\)
  2. \(-46\degree\)F; \(108\degree\)F
  3. \(-71\degree\)F

75.

Answer.
\(y = \dfrac{2}{5}- \dfrac{9}{5}x\)

77.

Answer.
  1. \(t\) \(0\) \(15\)
    \(P\) \(4800\) \(6780\)
  2. \(\displaystyle P = 4800 + 132t\)
  3. \(m = 132\) people/year: the population grew at a rate of \(132\) people per year.

79.

Answer.
\(6\)

81.

Answer.
  1. scatterplot with regression line
  2. \(129\) lb, \(145\) lb
  3. \(\displaystyle y = 2.\overline{6} x - 44.\overline{3}\)
  4. \(137\) lb
  5. \(\displaystyle y=2.84x - 55.74\)
  6. \(137.33\) lb

83.

Answer.
  1. scatterplot with regression line
  2. \(45\) cm
  3. \(87\) cm
  4. \(\displaystyle y = 1.2x - 3\)
  5. \(69\) cm
  6. \(y = 1.197x - 3.660\text{;}\) \(68.16\) cm

2 Modeling with Functions
2.1 Nonlinear Models
Homework 2.1

1.

Answer.
\(\pm\dfrac{5}{3} \)

3.

Answer.
\(\pm\sqrt{6} \)

5.

Answer.
\(\pm \sqrt{6} \)

7.

Answer.
\(\pm 2.65\)

9.

Answer.
\(\pm 5.72\)

11.

Answer.
\(\pm 5.73\)

13.

Answer.
\(\pm\sqrt{\dfrac{Fr}{m}} \)

15.

Answer.
\(\pm\sqrt{\dfrac{2s}{g}} \)

17.

Answer.
  1. \(\displaystyle V = 2.8 \pi r^2\approx 8.8r^2\)
  2. \(r\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\)
    \(V\) \(8.8\) \(35.2\) \(79.2\) \(140.7\) \(219.9\) \(316.7\) \(431.0\) \(563.0\)
    The volume increases by a factor of \(4\text{.}\)
  3. \(5.86\) cm
  4. GC graph

19.

Answer.
\(21\) in.

21.

Answer.
\(\sqrt{1800}\approx 42.4\) m

23.

Answer.
\(\sqrt{128}\) in. by \(\sqrt{128}\) in. \(\approx 11.3\) in. \({}\times{} 11.3\) in.

25.

Answer.
  1. GC graph
  2. \(\displaystyle x=\pm 12\)

27.

Answer.
  1. GC graph
  2. \(x= 1\) or \(x=9\)

29.

Answer.
  1. GC graph
  2. \(x= 10\) or \(x=-2\)

31.

Answer.
\(5, -1\)

33.

Answer.
\(\dfrac{5}{2}, \dfrac{-3}{2}\)

35.

Answer.
\(-2 \pm \sqrt{3}\)

37.

Answer.
\(\dfrac{1}{2} \pm \dfrac{\sqrt{3}}{2} \)

39.

Answer.
\(\dfrac{-2}{9} , \dfrac{-4}{9} \)

41.

Answer.
\(\dfrac{7}{8} \pm \dfrac{\sqrt{8}}{8}\)

43.

Answer.
\(6\)

45.

Answer.
\(64\)

47.

Answer.
\(\dfrac{13}{6} \)

49.

Answer.
\(8\)

51.

Answer.
\(9\)

53.

Answer.
\(\dfrac{33}{64} \)

55.

Answer.
  1. \(\displaystyle B = 5000 (1 + r )^2\)
  2. \(\displaystyle 11.8\%\)
  3. GC graph

57.

Answer.
\(8\%\)

59.

Answer.
\(7.98\) mm

61.

Answer.
  1. \(\sqrt{3}\approx 1.73\) sq cm, \(4\sqrt{3}\approx 6.93\) sq cm, \(25\sqrt{3}\approx 43.3\) sq cm
  2. GC graph
  3. An equilateral triangle with side \(5.1\) cm has area \(11.263 \text{ cm}^2\text{.}\)
  4. \(\text{side}\approx 6.8 \) cm
  5. \(\dfrac{\sqrt{3}}{4}s^2=20\text{;}\) \(s \approx 6.8\)
  6. \(\approx 20 \) cm

63.

Answer.
\(\pm \sqrt{\dfrac{bc}{a}}\)

65.

Answer.
\(a \pm 4\)

67.

Answer.
\(\dfrac{-b\pm 3}{a} \)

69.

Answer.
  1. Height Base Area Height Base Area
    \(1\) \(34\) \(34\) \(10\) \(16 \) \(160\)
    \(2\) \(32\) \(64\) \(11\) \(14\) \(154\)
    \(3\) \(30\) \(90\) \(12\) \(12\) \(144\)
    \(4\) \(28\) \(112\) \(13\) \(10\) \(130\)
    \(5\) \(26\) \(130\) \(14\) \(8\) \(112\)
    \(6\) \(24\) \(144\) \(15\) \(6\) \(90\)
    \(7\) \(22\) \(154\) \(16\) \(4\) \(64\)
    \(8\) \(20\) \(160\) \(17\) \(2\) \(34\)
    \(9\) \(18\) \(162\) \(18\) \(0\) \(0\)
  2. points and curve
  3. \(162\) sq ft, with base \(18\) ft, height \(9\) ft
  4. Base: \(36 - 2x\text{;}\) area: \(x (36 - 2x)\)
  5. See (a)
  6. \(6.5\) ft or \(11.5\) ft

71.

Answer.
  1. \(v\) \(0\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
    \(J\) \(0\) \(0.05\) \(0.2\) \(0.46\) \(0.82\) \(1.28\) \(1.84\) \(2.5\) \(3.27\) \(4.13\) \(5.1\) \(6.17\)
  2. two curves
  3. \(v\) \(0\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
    \(H\) \(0.9\) \(0.95\) \(1.1\) \(1.36\) \(1.72\) \(2.18\) \(2.74\) \(3.4\) \(4.17\) \(5.03\) \(6.0\) \(7.07\)
  4. \(5.5\) meters
  5. \(10.15\) meters per second

2.2 Some Basic Functions
Homework 2.2

1.

Answer.
  1. \(\displaystyle -9\)
  2. \(\displaystyle 9\)

3.

Answer.
  1. \(\displaystyle -4\)
  2. \(\displaystyle 20\)

5.

Answer.
\(-50 \)

7.

Answer.
\(144 \)

9.

Answer.
\(1 \)

11.

Answer.
  1. \(\displaystyle 2.7\)
  2. \(\displaystyle -2.7\)
  3. \(\displaystyle 1.8\)
  4. \(\displaystyle 2.9\)

13.

Answer.
  1. \(\displaystyle 0.3\)
  2. \(\displaystyle -0.4\)
  3. \(\displaystyle 0.2\)

15.

Answer.
  1. quadratic and cubic
  2. \(\displaystyle x = 0, ~x = 1\)
  3. \((-\infty,0) \) and \((0,1)\)

17.

Answer.
  1. quadratic and cubic
  2. \(\displaystyle x = 1\)
  3. \(\displaystyle (1, +\infty) \)

19.

Answer.
Graph (b) is the basic graph shifted 2 units down; graph (c) is the basic graph shifted 1 unit up.

21.

Answer.
Graph (b) is the basic graph shifted 1.5 units left; graph (c) is the basic graph shifted 1 unit right.

23.

Answer.
Graph (b) is the basic graph reflected about the \(x\)-axis; graph (c) is the basic graph reflected about the \(y\)-axis.

25.

Answer.
  1. \(\displaystyle \sqrt{x} \)
  2. \(\displaystyle \sqrt[3]{x} \)
  3. \(\displaystyle \abs{x} \)
  4. \(\displaystyle \dfrac{1}{x} \)
  5. \(\displaystyle x^3 \)
  6. \(\displaystyle \dfrac{1}{x^2} \)

27.

Answer.
  1. \(\displaystyle x\approx 12\)
  2. \(\displaystyle x\approx 18\)
  3. \(\displaystyle x \lt 9\)
  4. \(\displaystyle x\gt 3\)

29.

Answer.
  1. \(\displaystyle t\approx -3.1\)
  2. \(\displaystyle t\approx 1.5\)
  3. \(\displaystyle t \lt 0.8\)
  4. \(\displaystyle -2.4\lt t\lt 0.4\)

31.

Answer.
  1. \(\displaystyle x = 41\)
  2. \(\displaystyle 29\lt x\lt 61\)

33.

Answer.
  1. \(x = -5\) or \(x=17\)
  2. \(\displaystyle -1\lt x\lt 13\)

35.

Answer.
  1. \(x\) \(4 \) \(1 \) \(\frac{1}{4} \) \(0 \) \(\frac{1}{4} \) \(1 \) \(4 \)
    \(y\) \(-2\) \(-1 \) \(-\frac{1}{2} \) \(0 \) \(\frac{1}{2} \) \(1 \) \(2 \)
    parabola
  2. no

37.

Answer.
  1. \(x\) \(2 \) \(1 \) \(\frac{1}{2} \) \(0 \) \(\frac{1}{2} \) \(1 \) \(2 \)
    \(y\) \(-2\) \(-1 \) \(-\frac{1}{2} \) \(0 \) \(\frac{1}{2} \) \(1 \) \(2 \)
    absolute value rotated 90 degrees
  2. no

39.

Answer.
  1. \(x\) \(-\frac{1}{2} \) \(-1 \) \(-2 \) undefined \(2 \) \(1 \) \(\frac{1}{2} \)
    \(y\) \(-2\) \(-1 \) \(-\frac{1}{2} \) \(0 \) \(\frac{1}{2} \) \(1 \) \(2 \)
    absolute value rotated 90 degrees
  2. yes

41.

Answer.
piecewise function

43.

Answer.
piecewise function

45.

Answer.
piecewise function

47.

Answer.
piecewise function

49.

Answer.
piecewise function

51.

Answer.
piecewise function

53.

Answer.
\(f(x) = \begin{cases} 8-2x \amp x\lt 4\\ 2x-8 \amp x\ge 4 \end{cases}\)
piecewise function

55.

Answer.
\(g(t) = \begin{cases} -1-\dfrac{t}{3} \amp t\lt -3\\ 1+\dfrac{t}{3} \amp t\ge -3 \end{cases}\)
piecewise function

57.

Answer.
\(F(x) = \begin{cases} -x^3 \amp x\lt 0\\ x^3 \amp x\ge 0 \end{cases}\)
piecewise function

59.

Answer.
  1. Not always true: \(f (1 + 2)\ne f (1) + f (2)\) because \(9\ne 5\text{.}\)
  2. True: \((ab)^2 = a^2b^2\)

61.

Answer.
  1. Not always true: \(f (1 + 2)\ne f (1) + f (2)\) because \(\frac{1}{3} \ne\frac{3}{2} \text{.}\)
  2. True: \(\dfrac{1}{ab} = \dfrac{1}{a}\cdot\dfrac{1}{b} \)

63.

Answer.
  1. Not always true (unless \(b=0\)): \(f (1 + 2)\ne f (1) + f (2)\) because \(3m+b \ne 3m+2b \text{.}\)
  2. Not always true: \(f (1\cdot 2)\ne f (1)\cdot f (2)\) because \(2m+b \ne 2m^2 + 3mb + b^2 \text{.}\)

65.

Answer.
  1. number line
  2. number line
  3. number line
  4. number line

67.

Answer.
The distributive law shows a relationship between multiplication and addition that always holds. The equation \(f (a + b) = f (a) + f (b)\) is not about multiplication and may or may not be true.

2.3 Transformations of Graphs
Homework 2.3

1.

Answer.
\(y=\sqrt{x+2} \)

3.

Answer.
\(y=x^3-1 \)

5.

Answer.
\(y=\dfrac{1}{x-4} \)

7.

Answer.
  1. Translate \(y =\abs{x}\) by \(2\) units down.
  2. translated absolute value

9.

Answer.
  1. Translate \(y =\sqrt[3]{s} \) by \(4\) units right.
  2. translated cube root

11.

Answer.
  1. Translate \(y =\dfrac{1}{t^2} \) by \(1\) unit up.
  2. translated inverse-square

13.

Answer.
  1. Translate \(y =r^3 \) by \(2\) units left.
  2. translated cubic

15.

Answer.
  1. Translate \(y =\sqrt{d} \) by \(3\) units down.
  2. translated root

17.

Answer.
  1. Translate \(y =\dfrac{1}{v} \) by \(6\) units left.
  2. translated reciprocal

19.

Answer.
A vertical stretch by a factor of \(3\text{:}\) \(y = \dfrac{3}{x}\)

21.

Answer.
A vertical compression, the scale factor is \(\dfrac{1}{2}\text{:}\) \(y = \dfrac{1}{2}x^3\)

23.

Answer.
  1. Scale factor \(\frac{1}{3} \text{;}\) \(y =\abs{x}\) is compressed vertically by the scale factor.
  2. transformed absolute value

25.

Answer.
  1. Scale factor \(-2 \text{;}\) \(y =\frac{1}{z^2}\) is reflected over the \(z\)-axis and stretched vertically by a factor of \(2\text{.}\)
  2. transformed inverse-square

27.

Answer.
  1. Scale factor \(-3 \text{;}\) \(y =\sqrt{v}\) is reflected over the \(v\)-axis and stretched vertically by a factor of \(3\text{.}\)
  2. transformed root

29.

Answer.
  1. Scale factor \(\frac{-1}{2} \text{;}\) \(y =s^3 \) is reflected over the \(s\)-axis and compressed vertically by a factor of \(\frac{1}{2}\text{.}\)
  2. transformed cubic

31.

Answer.
  1. Scale factor \(\frac{1}{3} \text{;}\) \(y =\frac{1}{x} \) is compressed vertically by the scale factor.
  2. transformed reciprocal

33.

Answer.
  1. vi
  2. ii
  3. iv
  4. i
  5. v
  6. iii

35.

Answer.
  1. Vertical stretch by a factor of \(3\text{:}\) \(y = 3 f (x)\)
  2. Reflection about the \(x\)-axis: \(y = -f (x)\)
  3. Translation \(1\) unit right: \(y = f (x - 1)\)
  4. Translation \(4\) units up: \(y = f (x) + 4\)

37.

Answer.
  1. Reflection about the \(v\)-axis and vertical stretch by a factor of \(2\text{:}\) \(T = -2h(v)\)
  2. Vertical stretch by a factor of \(3\text{:}\) \(T = 3h(v)\)
  3. Translation \(3\) units up: \(T = h(v) + 3\)
  4. Translation \(3\) units left: \(T = h(v + 3)\)

39.

Answer.
  1. Translation \(2\) units up: \(y = f (x) + 2\)
  2. Translation \(4\) units down: \(y = f (x) - 4\)
  3. Vertical compression by a factor of \(\frac{1}{2} \text{:}\) \(y = \frac{1}{2}f (x)\)
  4. Translation \(1\) unit right: \(y = f (x - 1)\)

41.

Answer.
  1. Translation \(1\) unit right: \(y = f (x - 1)\)
  2. Part (a) is translated \(30\) units up: \(y = f (x - 1) + 30\)
  3. \(f\) is reflected about the \(x\)-axis and stretched vertically by a factor of \(2\text{:}\) \(y = -2 f (x)\)
  4. Part (c) is translated \(10\) units down: \(y = -2 f (x) - 10\)

43.

Answer.
\(y = \dfrac{1}{2}\cdot\dfrac{1}{x^2}\) is a vertical compression with factor \(dfrac{1}{2} \) of \(y = \dfrac{1}{x^2}\text{.}\)

45.

Answer.
\(y = 2\sqrt[3]{x}\) is a vertical stretch with factor \(2 \) of \(y = \sqrt[3]{x}\text{.}\)

47.

Answer.
\(y = 3\abs{x}\) is a vertical stretch with factor \(3 \) of \(y = \abs{x}\text{.}\)

49.

Answer.
\(y = \dfrac{1}{8}x^3 \) is a vertical compression with factor \(\dfrac{1}{8} \) of \(y = x^3\text{.}\)

51.

Answer.
  1. Translation by \(2\) units up and \(3\) units right
  2. transformed parabola

53.

Answer.
  1. Translation by \(2\) units left and \(3\) units down.
  2. transformed reciprocal

55.

Answer.
  1. Reflection across the \(u\)-axis, vertical stretch by a factor of \(3\text{,}\) translation by \(4\) units left and \(4\) units up
  2. transformed reciprocal

57.

Answer.
  1. Vertical stretch by a factor of \(2\text{,}\) translation by \(5\) units right and \(1\) down
  2. transformed reciprocal

59.

Answer.
  1. Reflection across the \(w\)-axis, vertical stretch by a factor of \(2\text{,}\) translation by \(6\) units up and \(1\) unit right
  2. transformed inverse-square

61.

Answer.
  1. Translation by \(8\) units right and \(1\) unit down
  2. transformed cube root

63.

Answer.
  1. Translation by \(4\) units up and \(1\) unit right: \(y = f (x - 1) + 4\)
  2. Vertical stretch by a factor of \(2\) and a translation by \(4\) units up: \(y = 2 f (x) + 4\)

65.

Answer.
  1. \(y =\abs{x}\) translated by \(1\) unit left and \(2\) units down
  2. \(\displaystyle y =\abs{x+1} - 2\)

67.

Answer.
  1. \(y =\sqrt{x}\) reflected about the \(x\)-axis and shifted \(3\) units up
  2. \(\displaystyle y =-\sqrt{x} +3\)

69.

Answer.
  1. \(y =x^3\) translated by \(3\) units right and \(1\) unit up
  2. \(\displaystyle y =(x - 3)^3 + 1\)

71.

Answer.
  1. \(y = f(x - 20)\text{:}\) Students scored \(20\) points higher than Professor Hilbert’s class.
  2. \(y = 1.5 f(x)\text{:}\) The class is about \(50\%\) larger than Hilbert’s, but the classes scored the same.

73.

Answer.
  1. \(y = f (x - 5000)\text{:}\) Taxpayers earn $\(5000\) more than Californians in each tax rate
  2. \(y = f (x) - 0.2\text{:}\) Taxpayers pay \(0.2\%\) less tax than Californians on the same income.

75.

Answer.
  1. \(y = g(t + 2)\text{:}\) This population has its maximum and minimum two months before the marmots.
  2. \(y = g(t) - 20\text{:}\) This population remains \(20\) fewer than that of the marmots.

2.4 Functions as Mathematical Models
Homework 2.4

1.

Answer.
(b)

3.

Answer.
(a)

5.

Answer.
piecewise function

7.

Answer.
piecewise function

9.

Answer.
(b)

11.

Answer.
  1. II
  2. IV
  3. I
  4. III

13.

Answer.
curve

15.

Answer.
curve

17.

Answer.
curve

19.

Answer.
\(y = x^3\) stretched or compressed vertically
cubic

21.

Answer.
\(y =\dfrac{1}{x} \) stretched or compressed vertically
reciprocal

23.

Answer.
\(y =\sqrt{x} \)
root

25.

Answer.
  1. Increasing
  2. Concave up

27.

Answer.
  1. Increasing
  2. Concave down

29.

Answer.
  1. Increasing, linear (neither concave up nor down)
  2. C

31.

Answer.
  1. Increasing, concave down
  2. F

33.

Answer.
  1. Decreasing, linear (neither concave up nor down)
  2. D

35.

Answer.
points
\(y=4 \sqrt[3]{x} \)

37.

Answer.
points
\(y=3\cdot \dfrac{1}{x^2} \)

39.

Answer.
points
\(y=0.5 x^2 \)

41.

Answer.
  1. Table (4), Graph (C)
  2. Table (3), Graph (B)
  3. Table (1), Graph (D)
  4. Table (2), Graph (A)

43.

Answer.
  1. III
  2. 3

45.

Answer.
  1. \(\displaystyle S(x) = \begin{cases} 5.95 \amp x \le 25\\ 7.95 \amp 25\lt x\le 50\\ 9.95 \amp 50\lt x\le 75\\ 10.95 \amp 75\lt x\le 100 \end{cases}\)
  2. piecewise function

47.

Answer.
  1. piecewise curve
    During the first 400 seconds Bob’s altitude is climbing with the aircraft; then the aircraft maintains a constant altitude of 10,000 feet for the next 100 seconds; after jumping from the plane, Bob falls for 20 seconds before opening the parachute; he falls at a constant rate after the chute opens.
  2. \(240\) seconds (4 minutes) and \(500 + \sqrt{250}\approx 515.8\)

49.

Answer.
  1. points and piecewise linear function
  2. \(m\approx 3.2\) mm/cc: The height of precipitate increases by \(1\) mm for each additional cc of lead nitrate
  3. \(\displaystyle f(x)= \begin{cases} 1.34 + 3.2x \amp x \lt 2.6\\ 9.6 \amp x\ge 2.6 \end{cases}\)
  4. The increasing portion of the graph corresponds to the period when the reaction was occurring, and the horizontal section corresponds to when the potassium iodide is used up.

51.

Answer.
  1. II
  2. IV
  3. I
  4. III

2.5 The Absolute Value Function
Homework 2.5

1.

Answer.
  1. \(\displaystyle \abs{x}=6 \)
  2. number line

3.

Answer.
  1. \(\displaystyle \abs{p+3}=5 \)
  2. number line

5.

Answer.
  1. \(\displaystyle \abs{t-6}\lt 3 \)
  2. number line

7.

Answer.
  1. \(\displaystyle \abs{b+1}\ge 0.5 \)
  2. number line

9.

Answer.
absolute value graph
  1. \(x = -5\) or \(x = -1\)
  2. \(\displaystyle -7\le x\le 1\)
  3. \(x\lt -8\) or \(x\gt 2\)

11.

Answer.
absolute value graph
  1. \(\displaystyle x = 4\)
  2. No solution
  3. No solution

13.

Answer.
\(x=\dfrac{-3}{2} \) or \(x=\dfrac{5}{2} \)

15.

Answer.
\(q=\dfrac{-7}{3} \)

17.

Answer.
\(b=-14 \) or \(b=10 \)

19.

Answer.
\(w=\dfrac{13}{2} \) or \(w=\dfrac{15}{2} \)

21.

Answer.
No solution

23.

Answer.
No solution

25.

Answer.
\(\dfrac{-9}{2}\lt x \lt \dfrac{-3}{2} \)

27.

Answer.
\(d\le -2~ \) or \(~ d\ge 5 \)

29.

Answer.
All real numbers

31.

Answer.
\(1.4 \lt t\lt 1.6 \)

33.

Answer.
\(T\le 3.2~\) or \(~T\ge 3.3 \)

35.

Answer.
No solution

37.

Answer.
\(4.299\lt l\lt 4.301\)

39.

Answer.
\(250\le t\le 350\)

41.

Answer.
\(\abs{T - 5}\lt 0.3\)

43.

Answer.
\(\abs{D-100}\le 5\)

45.

Answer.
\(\abs{g-0.25}\le 0.001\)
number line

47.

Answer.
  1. \(\abs{t - 200}\lt 50\text{,}\) \(~150\le t\lt 250\)
  2. \(\abs{t - 200}\lt 0.5\text{,}\) \(~199.5\le t\lt 200.5\)
  3. \(\abs{t - 200}\lt 0.05\text{,}\) \(~199.95\le t\lt 200.05\)

49.

Answer.
  1. \(\displaystyle \abs{3x-6} = \begin{cases} -(3x-6) \amp \text{if } x\lt 2 \\ 3x-6 \amp \text{if } x\ge 2 \end{cases}\)
  2. \(-(3x - 6)\le 9\text{,}\) \(~3x - 6\lt 9\)
  3. \(\displaystyle -1\lt x\lt 5\)
  4. The solutions are the same.

51.

Answer.
  1. \(\displaystyle \abs{2x+5} = \begin{cases} -(2x+5) \amp \text{if } x\lt \dfrac{-5}{2} \\ 2x+5 \amp \text{if } x\ge \dfrac{-5}{2} \end{cases}\)
  2. \(-(2x+5)\gt 7\text{,}\) \(~2x+5\gt 7\)
  3. \(x\lt -6\) or \(~x\gt 1\)
  4. The solutions are the same.

53.

Answer.
piecewise linear
  1. \(\displaystyle f(x) = \begin{cases} -2x, \amp x\lt -4 \\ 8, \amp -4\le x\le 4 \\ 2x, \amp x\gt 4 \end{cases} \)
  2. The graphs looks like like a trough. The middle horizontal section is \(y = p + q\) for \(-p \le x\le q\text{,}\) the left side, \(x\lt -p\text{,}\) has slope \(-2\) and the right side, \(x\gt q\text{,}\) has slope \(2\text{.}\)
  3. \(\displaystyle g(x) = \begin{cases} -2x+q-p, \amp x\lt -p \\ p+q, \amp -p\le x\le q \\ 2x+p-q, \amp x\gt q \end{cases} \)

55.

Answer.
piecewise linear
  1. \(\displaystyle f(x) = \begin{cases} -3x, \amp x\lt -4 \\ -x+8, \amp -4\le x\le 0 \\ x+8, \amp 0\lt x\lt 4 \\ 3x, \amp x\ge 4 \end{cases} \)
  2. \(\displaystyle 8\)
  3. \(\displaystyle p+q\)

57.

Answer.
  1. \(\abs{x + 12}\text{,}\) \(\abs{x + 4}\text{,}\) \(\abs{x - 24}\)
  2. \(\displaystyle f(x)=\abs{x + 12}+\abs{x + 4}+\abs{x - 24}\)
  3. piecewise linear
    At \(x\)-coordinate \(-4\)

59.

Answer.
\(2\) miles east of the river

2.6 Domain and Range
Homework 2.6

1.

Answer.
Domain: \([-5, 3]\text{;}\) Range: \([-3, 7]\)

3.

Answer.
Domain: \([-4,5]\text{;}\) Range: \([-1, 1) \cup [3, 6]\)

5.

Answer.
Domain: \([-2,2]\text{;}\) Range: \([-1,1]\)

7.

Answer.
Domain: \((-5,5]\text{;}\) Range: \(\{-1,0,2,3\}\)

9.

Answer.
  1. Domain: all real numbers; Range: all real numbers
  2. Domain: all real numbers; Range: \([0, \infty)\)

11.

Answer.
  1. Domain: all real numbers except zero; Range: \((0, \infty)\)
  2. Domain: all real numbers except zero; Range: all real numbers except zero

13.

Answer.
Domain: \([0, 26.2]\text{;}\) Range: \([90, 300]\)

15.

Answer.
Domain: \([0, 600]\text{;}\) Range: \([-90, 700]\)

17.

Answer.
  1. \(\displaystyle V(t) = 6000 - 550t\)
  2. Domain: \([0, 10]\text{;}\) Range: \([500, 6000]\)

19.

Answer.
  1. parabola
  2. Domain: \([0, 4]\text{;}\) Range: \([0, 64].~~\)The ball reaches a height of 64 feet and hits the ground 4 seconds after being hit.

21.

Answer.
  1. step function
  2. Range: \(\{2.50, 2.90, 3.30, 3.70, 4.10\}\)
  3. $\(13.30\)

23.

Answer.
Domain: nonnegative integers; The range includes all whole number multiples of \(2.50\) up to \(20\times 2.50 = 50\text{,}\) all integer multiples of \(2.25\) from \(21\times 2.25 = 47.25\) to \(50 \times 2.25 = 112.50\) and all integer multiples of \(2.10\) from \(51\times 2.10 = 107.10\) onwards: \(0, 2.50, 5.00, 7.50, \ldots, 50\text{,}\) \(47.25, 49.50, 51.75, \ldots , 112.50\text{,}\) \(107.10, 109.20, 111.30, \ldots\)

25.

Answer.
  1. \(f (x)\) domain: \(x \ne 4\text{;}\) Range: \((0,\infty)\)
    horizontally shifted reciprocal-squared
  2. \(h (x)\) domain: \(x \ne 0\text{;}\) Range: \((-4,\infty)\)
    vertically shifted reciprocal-squared

27.

Answer.
  1. \(G(v)\) domain: all real numbers; Range: all real numbers
    vertically shifted reciprocal
  2. \(H(v)\) domain: all real numbers; Range: all real numbers
    horizontally shifted reciprocal

29.

Answer.
  1. \(G(v)\) domain: \([2,\infty)\text{;}\) Range: \([0,\infty)\)
    horizontally shifted root
  2. \(H(v)\) domain: \([0,\infty)\text{;}\) Range: \([-2,\infty)\)
    vertically shifted root

31.

Answer.
  1. Not in range
  2. \(x = -6\) or \(x = 2\)

33.

Answer.
  1. \(\displaystyle t = -64\)
  2. \(\displaystyle t=-8\)

35.

Answer.
  1. \(\displaystyle w=\dfrac{1}{2} \)
  2. Not in range

37.

Answer.
  1. Not in range
  2. \(\displaystyle h=4\)

39.

Answer.
Domain: \([-2, 5]\text{;}\) Range: \([-4, 12]\)

41.

Answer.
Domain: \([-5, 3]\text{;}\) Range: \([-15, 1]\)

43.

Answer.
Domain: \([-2, 2]\text{;}\) Range: \([-9, 7]\)

45.

Answer.
Domain: \([-1, 8]\text{;}\) Range: \([0, 3]\)

47.

Answer.
Domain: \([-1.25, 2.75]\text{;}\) Range: \(\left[\dfrac{4}{17} , 4\right]\)

49.

Answer.
Domain: \((3, 6]\text{;}\) Range: \(\left[-\infty,\dfrac{-1}{3} \right]\)

51.

Answer.
  1. Squaring both sides of the equation gives the equation of the circle centered on the origin with radius \(4\text{,}\) but the points in the third and fourth quadrants are extraneous solutions introduced by squaring. (The original equation allowed only \(y\ge 0\text{.}\))
  2. Domain: \([-4, 4]\text{;}\) Range: \([0, 4]\)
  3. GC graph
    The calculator does not show the graph extending down to the \(x\)-axis.

53.

Answer.
  1. Domain: \(x \ne 2\text{;}\) Range: \((0, \infty)\)
  2. Domain: \(x \ne 0\text{;}\) Range: \((-2, \infty)\)
  3. Domain: \(x \ne 3\text{;}\) Range: \((-5, \infty)\)

55.

Answer.
  1. Domain: all real numbers; Range: \((-\infty,0)\)
  2. Domain: all real numbers; Range: \((-\infty,6]\)
  3. Domain: all real numbers; Range: \((-\infty,6]\)

57.

Answer.
  1. Domain: \([3,13]\text{;}\) Range: \([-2,2]\)
  2. Domain: \([0,10]\text{;}\) Range: \([-6,6]\)
  3. Domain: \([5,15]\text{;}\) Range: \([-4,4]\)

59.

Answer.
  1. Domain: \((0,\infty)\text{;}\) Range: \((0,5)\)
  2. Domain: \((-2,\infty)\text{;}\) Range: \((0,3)\)
  3. Domain: \((3,\infty)\text{;}\) Range: \((2,4)\)

61.

Answer.
  1. \(\displaystyle f(x)\)
  2. \(\displaystyle g(x) \)

63.

Answer.
  1. \(\displaystyle g(x)\)
  2. \(\displaystyle f(x) \)

65.

Answer.
Domain: \([0\degree , 90\degree]\text{;}\) Range: \([12 , 24]\)

2.7 Chapter Summary and Review
Chapter 2 Review Problems

1.

Answer.
\(x = 1\) or \(x = 4\)

3.

Answer.
\(w = -2\) or \(w = 4\)

5.

Answer.
\(r = -1 \pm \sqrt{\dfrac{A}{P}}\)

7.

Answer.
\(11\%\)

9.

Answer.
\(P = 1.001\)

11.

Answer.
\(m = 29\)

13.

Answer.
\(r = 3\)

15.

Answer.
\(\sqrt{12,132}\approx 110\) cm

17.

Answer.
\(-2\)

19.

Answer.
\(24\)

21.

Answer.
  1. \(x = -2\) or \(x = 6\)
  2. \(\displaystyle (-2, 6)\)
  3. \(\displaystyle (-\infty,-2] \cup [6,+\infty)\)

23.

Answer.
  1. \(x = 0\) or \(x = 3\)
  2. \(\displaystyle (-\infty,0) \cup (3,\infty)\)
  3. \(\displaystyle (0, 3)\)

25.

Answer.
piecewise defined function

27.

Answer.
piecewise defined function

29.

Answer.
piecewise defined function

31.

Answer.
  1. \(y =\abs{x}\) shifted up \(2\) units
  2. shifted absolute value

33.

Answer.
  1. \(y =\sqrt{x}\) shifted up \(3\) units
  2. shifted square root

35.

Answer.
  1. \(y =\abs{x}\) shifted left \(2\) units and down \(3\) units
  2. shifted absolute value

37.

Answer.
  1. \(y =\sqrt{x}\) reflected across the horizontal axis and stretched vertically by a factor of \(2\)
  2. reflected and stretched square root

39.

Answer.
  1. \(\displaystyle y =\dfrac{-3}{2}f (t)\)
  2. \(\displaystyle y =\dfrac{-3}{2}f (t)+3\)
  3. \(\displaystyle y =\dfrac{-3}{2}f (t+2)+3\)

41.

Answer.
  1. \(\displaystyle y = f (t - 1)\)
  2. \(\displaystyle y = -f (t - 1)\)
  3. \(\displaystyle y = -f (t - 1)+300\)

43.

Answer.
\(y = (x - 2)^2 - 4\)

45.

Answer.
curve

47.

Answer.
I (c), II (b), III (a)

49.

Answer.
\(g(t) = \begin{cases} 60+t, \amp 0\le t \lt 10\\ 70, \amp 10\le t \lt 30\\ 70 - \frac{1}{2}(t - 30), \amp 30\le t \le 60 \end{cases}\)
piecewise

51.

Answer.
\(\abs{x}=4 \)

53.

Answer.
\(\abs{p-7}\lt 4 \)

55.

Answer.
\(t = \dfrac{6}{5}\) or \(t = \dfrac{12}{5}\)

57.

Answer.
No solutions

59.

Answer.
\(p = 1\) or \(p = 6\)

61.

Answer.
\(\left(\dfrac{-2}{3}, 2\right)\)

63.

Answer.
\((-\infty,-0.9] \cup [0.1,\infty)\)

65.

Answer.
\(\abs{H - 65.5}\lt 9.5\)

67.

Answer.
\([2.05, 2.15]\)

69.

Answer.
  1. curve
  2. \(\displaystyle g(x)=\dfrac{24}{x} \)

71.

Answer.
  1. \(x\) \(0\) \(4\) \(8\) \(14\) \(16\) \(22\)
    \(y\) \(24\) \(20\) \(16\) \(10\) \(8\) \(2\)
  2. \(\displaystyle y = 24 - x\)

73.

Answer.
  1. \(x\) \(0\) \(1\) \(4\) \(9\) \(16\) \(25\)
    \(y\) \(0\) \(1\) \(2\) \(3\) \(4\) \(5\)
  2. \(\displaystyle y = \sqrt{x} \)

75.

Answer.
  1. \(x\) \(-3\) \(-2\) \(-1\) \(0\) \(1\) \(2\)
    \(y\) \(5\) \(0\) \(-3\) \(-4\) \(-3\) \(0\)
  2. \(\displaystyle y = x^2-4 \)

77.

Answer.
Domain: \([-2, 4]\text{;}\) Range: \([-10, -4]\)

79.

Answer.
Domain: \((-2, 4]\text{;}\) Range: \(\left[\dfrac{1}{6} , \infty\right)\)

3 Power Functions
3.1 Variation
Homework 3.1

1.

Answer.
  1. \(\text{Price of item} \) \(18\) \(28\) \(12\)
    \(\text{Tax} \) \(1.17\) \(1.82\) \(0.78\)
    \(\text{Tax}/\text{Price} \) \(\alert{0.065}\) \(\alert{0.065}\) \(\alert{0.065}\)
    Yes; \(6.5\%\)
  2. \(\displaystyle T = 0.065p\)
  3. direct variation

3.

Answer.
  1. \(\text{Width (feet)} \) \(2\) \(2.5\) \(3\)
    \(\text{Length (feet)} \) \(12\) \(9.6\) \(8\)
    \(\text{Length}\times \text{width} \) \(\alert{24}\) \(\alert{24}\) \(\alert{24}\)
    \(24\) square feet
  2. \(\displaystyle L = \dfrac{24}{w} \)
  3. inverse variation

5.

Answer.
  1. The ratio \(\dfrac{y}{x} \) is a constant.
  2. The product \(xy\) is a constant.

7.

Answer.
  1. Length Width Perimeter Area
    \(10\) \(8\) \(\alert{36} \) \(\alert{80} \)
    \(12\) \(8\) \(\alert{40} \) \(\alert{96} \)
    \(15\) \(8\) \(\alert{46} \) \(\alert{120} \)
    \(20\) \(8\) \(\alert{56} \) \(\alert{160} \)
  2. No
  3. \(\displaystyle P=16+2l\)
  4. Yes
  5. \(\displaystyle A=8l\)

9.

Answer.
(b)

11.

Answer.
(c)

13.

Answer.
  1. \(\displaystyle m = 0.165w\)
    \(w\) \(50\) \(100\) \(200\) \(400\)
    \(m\) \(\alert{8.25}\) \(\alert{16.5}\) \(\alert{33}\) \(\alert{66}\)
  2. \(19.8\) lb
  3. \(303.03\) lb
  4. It will double.

15.

Answer.
  1. \(\displaystyle L = 0.8125T^2\)
    \(T\) \(1\) \(5\) \(10\) \(20\)
    \(L\) \(\alert{0.8125} \) \(\alert{20.3} \) \(\alert{81.25} \) \(\alert{325} \)
  2. \(234.8125\) ft
  3. \(0.96\) sec
  4. It must be four times as long.

17.

Answer.
  1. \(\displaystyle B = \dfrac{88}{d}\)
    \(d\) \(1\) \(2\) \(12\) \(24\)
    \(B\) \(\alert{88} \) \(\alert{44} \) \(\alert{7.3} \) \(\alert{3.7} \)
  2. \(8.8\) milligauss
  3. More than \(20.47\) in
  4. It is one half as strong.

19.

Answer.
  1. \(\displaystyle P = \dfrac{1825}{8192}w^3\approx0.228w^3\)
    \(w\) \(10\) \(20\) \(40\) \(80\)
    \(P\) \(\alert{223} \) \(\alert{1782} \) \(\alert{14,259} \) \(\alert{114,074} \)
  2. \(752\) kilowatts
  3. \(33.54\) mph
  4. It is multiplied by \(8\text{.}\)

21.

Answer.
  1. \(\displaystyle y= 0.3x\)
  2. \(x\) \(y\)
    \(2\) \(\alert{0.6}\)
    \(5\) \(1.5\)
    \(\alert{8}\) \(2.4\)
    \(12\) \(\alert{3.6} \)
    \(\alert{15} \) \(4.5\)
  3. \(y\) doubles.

23.

Answer.
  1. \(\displaystyle y= \dfrac{2}{3} x^2\)
  2. \(x\) \(y\)
    \(3\) \(\alert{6}\)
    \(6\) \(24\)
    \(\alert{9}\) \(54\)
    \(12\) \(\alert{96} \)
    \(\alert{15} \) \(150\)
  3. \(y\) is quadrupled.

25.

Answer.
  1. \(\displaystyle y= \dfrac{120}{x} \)
  2. \(4\) \(\alert{30}\)
    \(\alert{8} \) \(15\)
    \(20\) \(6\)
    \(30\) \(\alert{4} \)
    \(\alert{40} \) \(3\)
  3. \(y\) is halved.

27.

Answer.
(b) \(y = 0.5x^2\)

29.

Answer.
(c) \(\dfrac{y}{x^p}\) is not constant for any exponent \(p\text{.}\)

31.

Answer.
(b) \(y =\dfrac{72}{x^2}\)

33.

Answer.
(c) \(x^p y\) is not constant for any exponent \(p\text{.}\)

35.

Answer.
  1. \(\displaystyle d = 0.005v^2\)
  2. \(50\) m

37.

Answer.
  1. \(\displaystyle m =\dfrac{8}{p} \)
  2. \(0.8\) ton

39.

Answer.
  1. \(\displaystyle T=\dfrac{6}{d} \)
  2. \(1\degree\)C

41.

Answer.
  1. \(\displaystyle W = 600d^2 \)
  2. \(864\) newtons

43.

Answer.
  1. Wind resistance quadruples.
  2. It is one-ninth as great.
  3. It is decreased by \(19\%\) because it is \(81\%\) of the original.

45.

Answer.
  1. It is one-fourth the original illumination.
  2. It is one-ninth the illumination.
  3. It is \(64\%\) of the illumination.

47.

Answer.
  1. \(\displaystyle D = (2.5\times 10^{-52})m^2\)
  2. \(2\times 10^{74}\) kg
  3. \(\displaystyle 1.7\times 10^{-8} ~m\)

49.

Answer.
  1. \(\displaystyle L = (1.25\times 10{-27})m^3\)
  2. \(2\times 10^{12}\) kg

51.

Answer.
\(y = kx\) implies that \(k(cx)=c(kx)=cy\text{.}\)

53.

Answer.
If \(y = kx^2\text{,}\) then dividing both sides of the equation by \(x^2\) gives \(\dfrac{y}{x^2} = k\text{.}\)

55.

Answer.
Yes

3.2 Integer Exponents
Homework 3.2

1.

Answer.
\(n\) \(-5\) \(-4\) \(-3\) \(-2\) \(-1\) \(0\) \(1\) \(2\) \(3\) \(4\) \(5\)
\(3^n\) \(\frac{1}{243} \) \(\frac{1}{81} \) \(\frac{1}{27} \) \(\frac{1}{9} \) \(\frac{1}{3} \) \(1\) \(3\) \(9\) \(27\) \(81\) \(243\)
Each time \(n\) increases by \(1\text{,}\) we multiply the power in the bottom row by \(3\text{.}\)

3.

Answer.
  1. \(\displaystyle 8\)
  2. \(\displaystyle -8\)
  3. \(\displaystyle \dfrac{1}{8} \)
  4. \(\displaystyle \dfrac{-1}{8} \)

5.

Answer.
  1. \(\displaystyle \dfrac{1}{8} \)
  2. \(\displaystyle \dfrac{-1}{8} \)
  3. \(\displaystyle 8 \)
  4. \(\displaystyle -8 \)

7.

Answer.
  1. \(\displaystyle \dfrac{1}{2^1}=\dfrac{1}{2} \)
  2. \(\displaystyle \dfrac{1}{(-5)^2}=\dfrac{1}{25} \)
  3. \(\displaystyle 3^3=27 \)
  4. \(\displaystyle (-2)^4=16 \)

9.

Answer.
  1. \(\displaystyle 5\cdot 4^3=320 \)
  2. \(\displaystyle \dfrac{1}{(2q)^5}=\dfrac{1}{32q^5} \)
  3. \(\displaystyle \dfrac{-4}{x^2} \)
  4. \(\displaystyle 8b^3 \)

11.

Answer.
  1. \(\displaystyle \dfrac{1}{(m-n)^2} \)
  2. \(\displaystyle \dfrac{1}{y^2}+\dfrac{1}{y^3} \)
  3. \(\displaystyle \dfrac{2p}{q^4} \)
  4. \(\displaystyle \dfrac{-5x^{5}}{y^{2}} \)

13.

Answer.
  1. \(x\) \(1\) \(2\) \(4\) \(8\) \(16\)
    \(x^{-2}\) \(1 \) \(0.25 \) \(0.06 \) \(0.02 \) \(0.00 \)
  2. The values of \(f (x)\) decrease, because \(x^{-2}\) is the reciprocal of \(x^2\text{.}\)
  3. \(x\) \(1\) \(0.5\) \(0.25\) \(0.125\) \(0.0625\)
    \(x^{-2}\) \(1 \) \(4 \) \(16 \) \(64 \) \(256 \)
  4. The values of \(f (x)\) increase toward infinity, because \(x^{-2}\) is the reciprocal of \(x^2\text{.}\)

15.

Answer.
b. (ii), (iii), and (iv) have the same graph, because they represent the same function.

17.

Answer.
  1. \(\displaystyle F(r)=3r^{-4} \)
  2. \(\displaystyle G(w)=\dfrac{2}{5}w^{-3} \)
  3. \(\displaystyle H(z)=\dfrac{1}{9}z^{-2} \)

19.

Answer.
\(x=-1.25\) or \(x=1.25\)

21.

Answer.
\(t=\dfrac{1}{16} \)

23.

Answer.
\(v=\dfrac{1}{5} \) or \(v=\dfrac{-1}{5}\)

25.

Answer.
  1. \(\displaystyle P = 0.355v^3\)
  2. \(v\approx 52.03\) mph
  3. \(\displaystyle 3.375\)

27.

Answer.
  1. \(\displaystyle D =\dfrac{70}{i} \)
  2. It decreases by about \(2.3\) years.

29.

Answer.
  1. \(\displaystyle L = \left(4\pi sR^2 \right)T^4\approx 7.2\times 10^{-7}R^2T^4\)
  2. \(4840\) K

31.

Answer.
  1. \(500\) picowatts
  2. \(\displaystyle P = 8000d^{-4}\)
  3. \(d\) (nautical miles) \(4\) \(5\) \(7\) \(10\)
    \(P\) (picowatts) \(31.3 \) \(12.8\) \(3.3\) \(0.8\)
  4. \(16.8\) nautical miles
  5. inverse-square

33.

Answer.
  1. \(\displaystyle T = 16kr^2\)
  2. \(\displaystyle T = 0.1r^2\)
  3. parabola

35.

Answer.
  1. \(\displaystyle a^5\)
  2. \(\displaystyle \dfrac{1}{5^7} \)
  3. \(\displaystyle \dfrac{1}{p^3} \)
  4. \(\displaystyle \dfrac{1}{7^{10}} \)

37.

Answer.
  1. \(\displaystyle \dfrac{20}{x^3} \)
  2. \(\displaystyle \dfrac{1}{3u^{12}} \)
  3. \(\displaystyle 5^8 t \)

39.

Answer.
  1. \(\displaystyle \dfrac{x^4}{9y^6} \)
  2. \(\displaystyle \dfrac{a^6 b^4}{36} \)
  3. \(\displaystyle \dfrac{5}{6h^6} \)

41.

Answer.
  1. \(\displaystyle \dfrac{1}{3}x+3x^{-1} \)
  2. \(\displaystyle \dfrac{1}{4}x^{-2}-\dfrac{3}{2}x^{-1} \)

43.

Answer.
  1. \(\displaystyle \dfrac{1}{2}x^{-2}+x^{-3}-\dfrac{1}{2}x^{-4} \)
  2. \(\displaystyle \dfrac{2}{3}x^{-2}-\dfrac{1}{9}+\dfrac{1}{6}x^{2} \)

45.

Answer.
\(x - 3 + 2x^{-1}\)

47.

Answer.
\(-3 + 6t^{-2} + 12t^{-4}\)

49.

Answer.
\(-4 - 2u^{-1} + 6u^{-2}\)

51.

Answer.
\(4x^{-2}(x^4 + 4)\)

53.

Answer.
\(a^{-3}(3 - 3a^4 + a^6)\)

55.

Answer.
  1. No, because \(\frac{1}{(x+y)^2}\) is not \(\frac{1}{x^2} + \frac{1}{y^2}\text{.}\)
  2. Let \(x = 1\text{,}\) \(y = 2\text{,}\) then \((x + y)^{-2} = (1 + 2)^{-2} = 3^{-2} = \frac{1}{9}\text{,}\) but \(x^{-2} + y^{-2} = 1^{-2} + 2^{-2} = 1 + \frac{1}{4} = \frac{5}{4}\)

57.

Answer.
  1. \(\displaystyle x + x^{-1} = x + \dfrac{1}{x} = \dfrac{x^2}{x}+\dfrac{1}{x}= \dfrac{x^2 + 1}{x}\)
  2. \(\displaystyle x^3 + x^{-3} = x^3 + \dfrac{1}{x^3} = \dfrac{x^6}{x^3}+\dfrac{1}{x^3}= \dfrac{x^6 + 1}{x^3}\)
  3. \(\displaystyle x^n + x^{-n} = x^n + \dfrac{1}{x^n} = \dfrac{x^{2n}}{x^n}+\dfrac{1}{x^n}= \dfrac{x^{2n} + 1}{x^2}\)

59.

Answer.
\begin{align*} a^{-2}a^{-3} \amp= \frac{1}{a^2}\cdot\frac{1}{a^3}=\frac{1}{a^2\cdot a^3} \\ \amp= \frac{1}{a^{2+3}} \amp\amp \text{By the first law of exponents.} \\ \amp= \frac{1}{a^5}=a^{-5} \end{align*}

61.

Answer.
\begin{align*} \frac{a^{-2}}{a^{-6}} \amp= a^{-2}\div a^{-6} = \frac{1}{a^2}\div\frac{1}{a^6} \\ \amp= \frac{1}{a^{2}}\cdot\frac{a^6}{1} = \frac{a^6}{a^2} \\ \amp= a^{6-2}\amp\amp \text{By the second law of exponents.} \\ \amp= a^4 \end{align*}

3.3 Roots and Radicals
Homework 3.3

1.

Answer.
  1. \(\displaystyle 11\)
  2. \(\displaystyle 3\)
  3. \(\displaystyle 5\)

3.

Answer.
  1. \(\displaystyle 2\)
  2. \(\displaystyle 2\)
  3. \(\displaystyle 9\)

5.

Answer.
  1. \(\displaystyle 3\)
  2. \(\displaystyle 3\)
  3. \(\displaystyle 2 \)

7.

Answer.
  1. \(\displaystyle 2\)
  2. \(\displaystyle \dfrac{1}{2} \)
  3. \(\displaystyle \dfrac{1}{8} \)

9.

Answer.
  1. \(\displaystyle \sqrt{3} \)
  2. \(\displaystyle 4\sqrt[3]{x} \)
  3. \(\displaystyle \sqrt[5]{4x} \)

11.

Answer.
  1. \(\displaystyle \dfrac{1}{\sqrt[3]{6}} \)
  2. \(\displaystyle \dfrac{3}{\sqrt[8]{xy}} \)
  3. \(\displaystyle \sqrt[4]{x-2} \)

13.

Answer.
  1. \(\displaystyle 7^{1/2} \)
  2. \(\displaystyle (2x)^{1/3} \)
  3. \(\displaystyle 2z^{1/5} \)

15.

Answer.
  1. \(\displaystyle -3\cdot 6^{-1/4} \)
  2. \(\displaystyle (x-3y)^{1/4} \)
  3. \(\displaystyle -(1+3b)^{-1/5} \)

17.

Answer.
  1. \(\displaystyle 125\)
  2. \(\displaystyle 2\)
  3. \(\displaystyle 63\)
  4. \(\displaystyle -2x^7\)

19.

Answer.
  1. \(\displaystyle 1.414\)
  2. \(\displaystyle 4.217\)
  3. \(\displaystyle 1.125\)
  4. \(\displaystyle 0.140\)
  5. \(\displaystyle 2.782 \)

21.

Answer.
  1. \(\displaystyle g(x) = 3.7x^{1/3} \)
  2. \(\displaystyle H(x) = 85^{1/4}x^{1/4} \)
  3. \(\displaystyle F(t) = 25t^{-1/5} \)

23.

Answer.
\(x = 91.125\)

25.

Answer.
\(x = 241\)

27.

Answer.
\(x = \dfrac{19}{2} \)

29.

Answer.
\(x = \pm\sqrt{30} \)

31.

Answer.
\(L=\dfrac{gT^2}{4\pi^2} \)

33.

Answer.
\(s=\pm\sqrt{t^2-r^2} \)

35.

Answer.
\(v=\dfrac{4}{3}\pi r^3 \)

37.

Answer.
\(p=\dfrac{8Lvf}{\pi R^4} \)

39.

Answer.
  1. \(\displaystyle T=\dfrac{2\pi}{\sqrt{32}}L^{1/2} \)
  2. \(90\) feet
  3. square root

41.

Answer.
  1. \(3\) meters per second
  2. \(\approx 2.2\) meters per second
  3. square root
  4. \(1.9\) meters
  5. \(1.2\) meters per second

43.

Answer.
  1. \(6.5\times 10^{-13}\) cm; \(1.17\times 10^{-36} \text{ cm}^3\)
  2. \(\displaystyle 1.8\times 10^{14} g/\text{cm}^3\)
  3. Element Carbon Potassium Cobalt Technetium Radium
    Mass
    number, \(A\)
    \(14\) \(40\) \(60\) \(99\) \(226\)
    Radius, \(r\)
    (\(10^{-13}\) cm)
    \(3.1\) \(4.4\) \(5.1\) \(6\) \(7.9\)
  4. cube root

45.

Answer.
  1. \(\displaystyle s = 50\sqrt{d}\)
  2. \(30\) cm/sec
  3. square root

47.

Answer.
  1. \(\displaystyle r = 12.1\sqrt{P}\)
  2. \(94\) ft/sec
  3. square root

49.

Answer.
  1. \(287\text{;}\) \(343\)
  2. \(2015\text{;}\) \(2058\)
  3. The membership grows rapidly at first but is growing less rapidly with time.
    cube root

51.

Answer.
  1. I
  2. III
  3. II
  4. none

53.

Answer.
  1. The graphs of \(x^{1/n}\) become closer and closer to horizontal when \(n\) increases (for \(x\gt 1\)).
  2. \(\displaystyle 10,~ 4.64,~ 3.16,~ 2.51\)
  3. \(1.58, 1.05,~ 1.005\text{;}\) the values decrease towards \(1\text{.}\)

55.

Answer.
The graphs of \(y_1\) and \(y_2\) are symmetric about \(y_3 = x\text{.}\)

57.

Answer.
The graphs of \(y_1\) and \(y_2\) are symmetric about \(y_3 = x\text{.}\)

59.

Answer.
  1. cube root
  2. \(\displaystyle x=36\)

61.

Answer.
  1. \(\displaystyle x^{1/2}\)
  2. \(\displaystyle \left(x^{1/2} \right)^{1/2} \)
  3. \begin{equation*} \begin{aligned}[t] \sqrt{\sqrt{x}}\amp =\left(x^{1/2} \right)^{1/2} \amp\amp\text{By definition of fractional exponents.}\\ \amp=x^{1/4} \amp\amp\text{By the third law of exponents.}\\ \amp=\sqrt[4]{x} \amp\amp\text{By definition of fractional exponents.} \end{aligned} \end{equation*}

63.

Answer.
\(\displaystyle{\frac{1}{4}x^{1/2}-2x^{-1/2}+\frac{1}{\sqrt{2}}x}\)

65.

Answer.
\(\displaystyle{3x^{-1/3}-\frac{1}{2}}\)

67.

Answer.
\(x^{0.5} + x^{-0.25} - x^0\)

3.4 Rational Exponents
Homework 3.4

1.

Answer.
  1. \(\displaystyle 27\)
  2. \(\displaystyle 25\)
  3. \(\displaystyle 125\)

3.

Answer.
  1. \(\displaystyle \dfrac{1}{64} \)
  2. \(\displaystyle \dfrac{1}{16} \)
  3. \(\displaystyle \dfrac{1}{256} \)

5.

Answer.
  1. \(\displaystyle \sqrt[5]{x^4} \)
  2. \(\displaystyle \dfrac{1}{\sqrt[6]{b^5} } \)
  3. \(\displaystyle \dfrac{1}{\sqrt[3]{(pq)^2}} \)

7.

Answer.
  1. \(\displaystyle 3\sqrt[5]{x^2} \)
  2. \(\displaystyle \dfrac{4}{\sqrt[3]{z^4}} \)
  3. \(\displaystyle -2\sqrt[4]{xy^3} \)

9.

Answer.
  1. \(\displaystyle x^{2/3} \)
  2. \(\displaystyle 2a^{1/5}b^{3/5} \)
  3. \(\displaystyle -4m p^{-7/6} \)

11.

Answer.
  1. \(\displaystyle (ab)^{2/3} \)
  2. \(\displaystyle 8x^{-3/4} \)
  3. \(\displaystyle \dfrac{1}{3}RT^{-1/2}K^{-5/2} \)

13.

Answer.
  1. \(\displaystyle 8 \)
  2. \(\displaystyle -81 \)
  3. \(\displaystyle 2y^3 \)

15.

Answer.
  1. \(\displaystyle -a^4 b^8 \)
  2. \(\displaystyle 2x^3y^9 \)
  3. \(\displaystyle -3a^2 b^3 \)

17.

Answer.
  1. \(\displaystyle 7.931\)
  2. \(\displaystyle 10.903\)
  3. \(\displaystyle 0.090\)
  4. \(\displaystyle 35.142\)

19.

Answer.
  1. \(t\) \(5\) \(10\) \(15\) \(20\)
    \(I(t)\) \(131 \) \(199 \) \(254 \) \(302 \)
    Range: \([0, 302]\)
  2. \(\approx 19.812\) or about \(20\) days
  3. power function

21.

Answer.
All the graphs are increasing and concave up. For \(x \gt 1\text{,}\) each graph increases more quickly than the previous one.

23.

Answer.
  1. \(V = L^3\text{,}\) \(A = 6L^2\)
  2. \(L=V^{1/3}\text{,}\) \(L=\left(\dfrac{A}{6} \right)^{1/2}\)
  3. \(\displaystyle A=6V^{2/3}\)
  4. \(\dfrac{A}{V}=\frac{6}{L} \text{.}\) As \(L\) increases, the surface-to-volume ratio decreases.

25.

Answer.
  1. power function
  2. $\(7114.32\)

27.

Answer.
  1. \(A\) \(10\) \(100\) \(1000\) \(5000\) \(10,000\)
    \(S\) \(25 \) \(42 \) \(69 \) \(98 \) \(115 \)
  2. power function
  3. \(81\text{,}\) \(71\)
  4. \(126,000\) sq km

29.

Answer.
  1. Home range size: II, lung volume: III, brain mass: I, respiration rate: IV
  2. If \(p\gt 1\text{,}\) the graph is increasing and concave up. If \(0\lt p\lt 1\text{,}\) the graph is increasing and concave down. If \(p\lt 0\text{,}\) the graph is decreasing and concave up.

31.

Answer.
  1. Tricosanthes is the snake gourd and Lagenaria is the bottle gourd. Tricosanthes is thinner and Lagenaria is fatter.
  2. \(\displaystyle a\approx 9.5\)
  3. \(\displaystyle a\approx 2\)
  4. Yes

33.

Answer.
  1. powe function
  2. \(79\) species
  3. \(18.4\degree\)C
  4. \(f (9)\approx 85\text{,}\) \(f (10)\approx 79\text{,}\) \(f (19)\approx 49\text{,}\) \(f (20)\approx 47\text{;}\) from \(9\degree\)C to \(10\degree\)C has the greater decrease, corresponding to the steeper slope.

35.

Answer.
  1. \(\displaystyle P=\dfrac{k}{\pi}d^{p-2} \)
  2. scatterplot and power function
    The power function is a good fit on this interval.
  3. \(\displaystyle 1.3\)

37.

Answer.
  1. \(\displaystyle 4a^2\)
  2. \(\displaystyle 9b^{5/3} \)

39.

Answer.
  1. \(\displaystyle 4w^{3/2} \)
  2. \(\displaystyle 3z^2 \)

41.

Answer.
  1. \(\displaystyle \dfrac{1}{2k^{1/4}} \)
  2. \(\displaystyle \dfrac{4}{3h^{1/3}} \)

43.

Answer.
  1. Wren: \(15\) days, greylag goose: \(28\) days
  2. \(\displaystyle \dfrac{I(m)\cdot W(m)}{m}=0.18m^{-0.041} \)
  3. Because \(m^{-0.041}\) is close to \(m^0\text{,}\) the fraction lost is close to \(0.18\text{.}\)

45.

Answer.
\(x = 64\)

47.

Answer.
\(x = \dfrac{1}{243} \)

49.

Answer.
\(x\approx 2.466 \)

51.

Answer.
  1. \(\displaystyle p= 1.115\times 10^{-12} a^{3/2}\)
  2. \(1.88\) years

53.

Answer.
\(\dfrac{13}{3} \)

55.

Answer.
\(0.665 \)

57.

Answer.
\(2x^{3/2} - 2x\)

59.

Answer.
\(\dfrac{1}{2}y^{1/3}+\dfrac{3}{2}y^{-7/6} \)

61.

Answer.
\(2x^{1/2} - x^{1/4} - 1 \)

63.

Answer.
\(a^{3/2}-4a^{3/4}+4 \)

65.

Answer.
\(x(x^{1/2} + 1)\)

67.

Answer.
\(\dfrac{y-1}{y^{1/4}} \)

69.

Answer.
\(\dfrac{a^{2/3}+a^{1/3}-1}{a^{1/3}} \)

3.5 Joint Variation
Homework 3.5

1.

Answer.
  1. \(\displaystyle R = f (x, y) = 129x + 240y\)
  2. \(f (24, 12) = 5976\) dollars is the maximum revenue.

3.

Answer.
  1. \(f\left(4,\dfrac{3}{2}\right)=\dfrac{25}{12}\approx 2.1 \) inches
  2. No: We do not have \(r = kL^2\) for any constant \(k\text{.}\)
  3. When \(L = 2r\) and \(h = r\text{,}\) \(f (L, h) = r\text{.}\)

5.

Answer.
  1. \(16,220\) sq cm
  2. Height
  3. \(\displaystyle 4.1\%\)

7.

Answer.
  1. \(\displaystyle C = f (s,w)\)
  2. \(f (4.5, 160) = 110\text{,}\) so someone walking \(4.5\) mph and weighing \(160\) pounds burns \(110\) calories per mile.
  3. \(s\gt 4.5\text{.}\) A person who weighs \(160\) pounds must walk faster than \(4.5\) mph in order to burn more than \(110\) calories per mile.
  4. \(7\) mph
  5. Find the row with your walking speed in the left column and move along that row until you are in the column with your weight at the top. The value in that row and column is the number of calories you burn per mile.

9.

Answer.
  1. When is \(f (r, 20)\le 800\text{?}\) \(~r \le7\%\text{;}\) When is \(f (r, 30) \le 800\text{?}\) \(~r\le 9\%\)
  2. Reducing interest rate by \(5\%\)
  3. No
  4. No
  5. \(30\)-year loan

11.

Answer.
  1. Direct variation: In each row, \(E = km\) for some constant \(k\) that depends on the row.
  2. Inverse variation: In each column, \(E = \dfrac{c}{g}\) for some constant \(c\) that depends on the column.
  3. \(E = \dfrac{m}{g}\) miles/gallon
  4. four direct variation
  5. four inverse variation

13.

Answer.
  1. In each row, \(R = kp\) for some constant \(k\) that depends on the row.
  2. In each column, \(R = cd^2\) for some constant \(c\) that depends on the column.
  3. \(\displaystyle R = 1.57d^2 p\)
  4. \(588.75\) pounds: When we keep \(p\) constant and double \(d\text{,}\) \(R\) is multiplied by a factor of \(4\text{.}\) So the value at \(d = 2\frac{1}{2} \text{,}\) \(p = 60\) should be \(4\) times the value at \(d = 1\frac{1}{4} \text{,}\) \(p = 60\text{.}\)

15.

Answer.
  1. \(\displaystyle a=\dfrac{2d}{t^2} \)
  2. Mercedes-Benz: \(19.05~ \text{ft}/\text{sec}^2\text{,}\) Porsche: \(19.73~ \text{ft}/\text{sec}^2\text{,}\) Dodge: \(20.47~ \text{ft}/\text{sec}^2\text{,}\) Saleen: \(23.59~ \text{ft}/\text{sec}^2\text{,}\) Ford: \(25.66~ \text{ft}/\text{sec}^2\)
  3. four lines
  4. four inverse square

17.

Answer.
  1. \(\displaystyle L = \dfrac{3.2v^3}{R}\)
  2. Increased by \(72.8\%\)
  3. Decreased by \(16\frac{2}{3}\%\)

19.

Answer.
  1. Percent Ammonia
    Pressure (atmospheres)
    Temperature
    (\(\degree\)C)
    \(50\) \(100\) \(150\) \(200\) \(250\) \(300\) \(350\) \(400\)
    \(350\) \(25\) \(38\) \(46\) \(53\) \(58\) \(62\) \(66\) \(68\)
    \(400\) \(16\) \(26\) \(33\) \(38\) \(45\) \(48\) \(53\) \(56\)
    \(450\) \(9\) \(17\) \(23\) \(28\) \(32\) \(37\) \(40\) \(43\)
    \(500\) \(6\) \(11\) \(16\) \(20\) \(23\) \(27\) \(29\) \(32\)
    \(550\) \(4\) \(8\) \(11\) \(14\) \(17\) \(19\) \(22\) \(24\)
  2. The ammonia yield decreases.
  3. yield vs temperature

3.6 Chapter Summary and Review
Chapter 3 Review Problems

1.

Answer.
  1. \(\displaystyle d = 1.75t^2\)
  2. \(63\) cm

3.

Answer.
\(480\) bottles

5.

Answer.
  1. \(\displaystyle w = \dfrac{k}{r^2}\)
  2. inverse square in first quadrant
  3. \(3960\sqrt{3}\approx 6860\) miles

7.

Answer.
\(y = 1.2x^2\)

9.

Answer.
\(y =\dfrac{20}{x} \)

11.

Answer.
  1. \(\displaystyle \dfrac{1}{81} \)
  2. \(\displaystyle \dfrac{1}{64} \)

13.

Answer.
  1. \(\displaystyle \dfrac{1}{243m^5} \)
  2. \(\displaystyle \dfrac{-7}{y^8} \)

15.

Answer.
  1. \(\displaystyle \dfrac{2}{c^3} \)
  2. \(\displaystyle \dfrac{99}{z^2} \)

17.

Answer.
  1. \(\displaystyle 25\sqrt{m} \)
  2. \(\displaystyle \dfrac{8}{\sqrt[3]{n}} \)

19.

Answer.
  1. \(\displaystyle \dfrac{1}{\sqrt[4]{27q^3}} \)
  2. \(\displaystyle 7\sqrt{u^3v^3} \)

21.

Answer.
  1. \(\displaystyle 2x^{2/3} \)
  2. \(\displaystyle \dfrac{1}{4}x^{1/4} \)

23.

Answer.
  1. \(\displaystyle 6b^{-3/4} \)
  2. \(\displaystyle \dfrac{-1}{3}b^{-1/3} \)

25.

Answer.
inverse square

27.

Answer.
inverse square

29.

Answer.
\(f(x)=\dfrac{2}{3}x^{-4} \)

31.

Answer.
  1. \(x\) \(16\) \(\dfrac{1}{4} \) \(3\) \(100\)
    \(Q(x)\) \(4096 \) \(\dfrac{1}{8} \) \(4\sqrt{3^5}\approx 62.35 \) \(400,000\)
  2. increasing concave up

33.

Answer.
  1. \(x\) \(0\) \(1 \) \(5\) \(10\) \(20\) \(50\) \(70\) \(100\)
    \(f(x)\) \(0 \) \(1 \) \(1.62\) \(2.00 \) \(2.46 \) \(3.23\) \(3.58\) \(3.98\)
  2. increasing concave up

35.

Answer.
\(112\) kg

37.

Answer.
  1. increasing concave down
  2. 283
  3. 2051

39.

Answer.
  1. It is the cost of producing the first ship.
  2. \(C = \dfrac{12}{ \sqrt[8]{x}} \) million
  3. About $\(11\) million; about \(8.3\%\) ; about \(8.3\%\)
  4. About \(8.3\%\)

41.

Answer.
\(t=10\)

43.

Answer.
\(x=7\)

45.

Answer.
\(x=5\)

47.

Answer.
\(x=75\)

49.

Answer.
\(y=29,524\)

51.

Answer.
\(g=\dfrac{2v}{t^2} \)

53.

Answer.
\(p=\pm 2 \sqrt{R^2-R} \)

55.

Answer.
\(49t^2\)

57.

Answer.
\(\dfrac{k^7}{64} \)

59.

Answer.
\(8a^2 \)

61.

Answer.
  1. \(132.6\) km
  2. square root function

63.

Answer.
  1. \(\displaystyle 480\)
  2. \(\displaystyle 498\)

65.

Answer.
  1. $\(450\)
  2. \(t = 8\text{:}\) It costs $\(864\) to insulate a ceiling with \(8\) cm of insulation over an area of \(600\) square meters.
  3. \(\displaystyle C = 0.72A\)
  4. \(\displaystyle C = 18T\)
  5. \(\displaystyle C = 0.18AT\)
  6. $\(1440\)

67.

Answer.
  1. \(N =\dfrac{k}{d^2E^3}\text{,}\) where \(N\) is number of people, \(d\) is distance in miles from the road, \(E\) is the elevation gain, and \(k\) is the constant of variation.
  2. \(\displaystyle k\approx 0.01 \)
  3. \(\displaystyle 3\)

4 Exponential Functions
4.1 Exponential Growth and Decay
Homework 4.1

1.

Answer.
  1. $\(28\)
  2. $\(31.36\)

3.

Answer.
It is \(99\%\) of what it was \(2\) years ago.

5.

Answer.
  1. \(P = 1200 + 150t\text{;}\) \(1650\)
  2. \(P = 1200\cdot 1.5^t\text{;}\) \(4050\)

7.

Answer.
  1. \(V = 18,000 - 2000t\text{;}\) $\(8000\)
  2. \(V = 18,000\cdot 0.8^t\text{;}\) $\(5898.24\)

9.

Answer.
A: \(20\%\text{;}\) B: \(2\%\text{;}\) C: \(7.5\%\text{;}\) D: \(100\%\text{;}\) E: \(115\%\)

11.

Answer.
  1. \(\displaystyle P = 20,000\cdot 2.5^{t/6}\)
  2. exponential growth
  3. \(36,840\) bees; \(424,128\) bees

13.

Answer.
  1. \(\displaystyle A = 4000\cdot 1.08^t\)
  2. exponential growth
  3. $\(4665.60\text{;}\) $\(8635.70\)

15.

Answer.
  1. \(\displaystyle P = 200,000\cdot 1.05^t\)
  2. exponential growth
  3. $\(359,171\text{;}\) $\(746,691\)

17.

Answer.
  1. \(\displaystyle P = 250,000\cdot 0.75^{t/2}\)
  2. exponential decay
  3. \(162,380\text{;}\) \(79,102\)

19.

Answer.
  1. \(\displaystyle L = 0.85^{d/4}\)
  2. exponential decay
  3. \(44\%\text{;}\) \(16\%\)

21.

Answer.
  1. \(\displaystyle P = 50\cdot 0.992^t\)
  2. exponential decay
  3. \(46.1\) lb; \(22.4\) lb

23.

Answer.
  1. \(\displaystyle 3^{x+4}\)
  2. \(\displaystyle 3^{4x}\)
  3. \(\displaystyle 12^x \)

25.

Answer.
  1. \(\displaystyle b^{-2t} \)
  2. \(\displaystyle b^{t/2} \)
  3. \(\displaystyle 1\)

27.

Answer.
\(P (t + 1) = 12 (3)^{t+1}= 12 (3)^{t}\cdot 3= P(t) \cdot 3 \)

29.

Answer.
\(P (x+k) = P_0 a^{x+k} = P_0 a^{x}\cdot a^k = P(x) \cdot a^k \)

31.

Answer.
  1. In the expression \(2\cdot 3^t\text{,}\) only the \(3\) is raised to a power \(t\text{,}\) and the result is doubled, but if both the \(2\) and the \(3\) were raised to the power \(t\text{,}\) the result would be \(6^t\text{.}\)
  2. \(t\) \(0\) \(1\) \(2\)
    \(P(t)\) \(2\) \(6\) \(18\)
    \(Q(t)\) \(1\) \(6\) \(36\)

33.

Answer.
\(4\)

35.

Answer.
\(1.2\)

37.

Answer.
\(r\approx 0.14\)

39.

Answer.
\(r\approx 0.04\)

41.

Answer.
  1. \(\displaystyle P(t) = 1,545,387b^t\)
  2. Growth factor \(1.049\text{;}\) Percent rate of growth \(4.9\%\)
  3. \(\displaystyle 2,493,401\)

43.

Answer.
  1. \(\displaystyle 365\)
  2. \(\displaystyle N(t) = 365(0.356)^t\)
  3. decay
  4. \(0.03\text{.}\) (Therefore, none)

45.

Answer.
The growth factor is \(1.5\text{.}\)
\(t\) \(0\) \(1\) \(2\) \(3\) \(4\)
\(P\) \(~8~\) \(12\) \(18\) \(27\) \(40.5\)

47.

Answer.
The growth factor is \(1.2\text{.}\)
\(x\) \(0\) \(1\) \(2\) \(3\) \(4\)
\(Q\) \(20\) \(24\) \(28.8\) \(34.56\) \(41.47\)

49.

Answer.
The decay factor is \(0.8\text{.}\)
\(w\) \(0\) \(1\) \(2\) \(3\) \(4\)
\(N\) \(120\) \(96\) \(76.8\) \(61.44\) \(49.15\)

51.

Answer.
The decay factor is \(0.8\text{.}\)
\(t\) \(0\) \(1\) \(2\) \(3\) \(4\)
\(C\) \(10\) \(8\) \(6.4\) \(5.12\) \(4.10\)

53.

Answer.
The growth factor is \(1.1\text{.}\)
\(n\) \(0\) \(1\) \(2\) \(3\) \(4\)
\(B\) \(200\) \(220\) \(242\) \(266.2\) \(292.82\)

55.

Answer.
  1. Initial value \(4\text{,}\) growth factor \(2^{1/3}\)
  2. \(\displaystyle f (x) = 4\cdot 2^{x/3}\)

57.

Answer.
  1. Initial value \(80\text{,}\) decay factor \(\frac{1}{2}\)
  2. \(\displaystyle f (x) = 80\cdot \left(\dfrac{1}{2} \right)^x \)

59.

Answer.
\(84.6\%\text{,}\) \(55.8\%\)

61.

Answer.
No, an increase of \(48\%\) in \(6\) years corresponds to a growth factor of \(1.48^{1/6}\approx 1.0675\text{,}\) or an annual growth rate of about \(6.75\%\text{.}\)

63.

Answer.
  1. \(\displaystyle P(t) = 16,986,335(1 + r)^t\)
  2. \(\displaystyle 2.07\%\)

65.

Answer.
  1. \(\displaystyle 3.53\%\)
  2. \(\displaystyle 3.53\%\)
  3. No
  4. \(\displaystyle 3.53\%\)

67.

Answer.
  1. \(39\text{;}\) \(1.045\)
  2. \(35\text{;}\) \(1.047\)
  3. Species B

69.

Answer.
  1. \(t\) \(0\) \(2\) \(4\) \(6\) \(8\)
    \(L(t)\) \(3\) \(6\) \(9\) \(12\) \(15\)
    \(\displaystyle L(t) = 3 + 1.5t\)
    linear and exponential
  2. \(t\) \(0\) \(2\) \(4\) \(6\) \(8\)
    \(E(t)\) \(3\) \(6\) \(12\) \(24\) \(48\)
    \(\displaystyle E(t) = 3\cdot 2^{t/2}\)

71.

Answer.
  1. \(244\) tigers per year
  2. \(0.97\text{;}\) \(3\%\)
  3. Linear: \(3067\text{;}\) Exponential: \(4170\)

4.2 Exponential Functions
Homework 4.2

1.

Answer.
  1. \(26\text{;}\) increasing
  2. \(1.2\text{;}\) decreasing
  3. \(75\text{;}\) decreasing
  4. \(\frac{2}{3} \text{;}\) increasing

3.

Answer.
\(x\) \(-3\) \(-2\) \(-1\) \(0\) \(1\) \(2\) \(3\)
\(f(x)=3^x \) \(\frac{1}{27} \) \(\frac{1}{9} \) \(\frac{1}{3} \) \(1\) \(3\) \(9\) \(27\)
\(g(x)=\left(\frac{1}{3} \right)^x \) \(27\) \(9\) \(3\) \(1\) \(\frac{1}{3} \) \(\frac{1}{9} \) \(\frac{1}{27} \)
exponential growth and decay
The two graphs are reflections of each other across the \(y\)-axis. \(f\) is increasing, \(g\) is decreasing. \(f\) has the negative \(x\)-axis as an asymptote, and \(g\) has the positive \(x\)-axis as its asymptote.

5.

Answer.
\(t\) \(-3\) \(-2\) \(-1\) \(0\) \(1\) \(2\) \(3\)
\(h(t)=4^{-t} \) \(64\) \(16\) \(4\) \(1\) \(\frac{1}{4} \) \(\frac{1}{16} \) \(\frac{1}{64} \)
\(q(t)=-4^t \) \(\frac{-1}{64} \) \(\frac{-1}{16} \) \(\frac{-1}{4} \) \(-1\) \(-4\) \(-16\) \(-64\)
exponential decay and negative of growth
The graphs are reflections of each other across the origin. Both are decreasing, but \(h\) has the negative \(t\)-axis as an asymptote, and \(q\) has the positive t-axis as its asymptote.

7.

Answer.
  1. I
  2. IV
  3. III
  4. II

9.

Answer.
  1. growth
  2. \(\displaystyle [1.08, 14.85] \)

11.

Answer.
  1. decay
  2. \(\displaystyle [16.38, 152.59]\)

13.

Answer.
Because they are defined by equivalent expressions, (b), (c), and (d) have identical graphs

15.

Answer.
  1. To evaluate \(f\) we subtract \(1\) from the input before evaluating the exponential function; to evaluate \(g\) we subtract \(1\) from the output of the exponential function.
  2. \(x\) \(y=2^x\) \(f(x)\) \(g(x)\)
    \(-2\) \(\dfrac{1}{4} \) \(\dfrac{1}{8} \) \(\dfrac{-3}{4} \)
    \(-1\) \(\dfrac{1}{2} \) \(\dfrac{1}{4} \) \(\dfrac{-1}{2} \)
    \(0\) \(1 \) \(\dfrac{1}{2} \) \(0 \)
    \(1\) \(2 \) \(1 \) \(1 \)
    \(2\) \(4 \) \(2 \) \(3 \)
    two shifts of growth
  3. The graph of \(f\) is translated \(1\) unit to the right; the graph of \(g\) is shifted \(1\) unit down.

17.

Answer.
  1. To evaluate \(f\) we take the negative of the output of the exponential function; to evaluate \(g\) we take the negative of the input.
  2. \(x\) \(y=3^x\) \(f(x)\) \(g(x)\)
    \(-2\) \(\dfrac{1}{9} \) \(\dfrac{-1}{9} \) \(9 \)
    \(-1\) \(\dfrac{1}{3} \) \(\dfrac{-1}{3} \) \(3 \)
    \(0\) \(1 \) \(-1 \) \(1 \)
    \(1\) \(3 \) \(-3 \) \(\dfrac{1}{3} \)
    \(2\) \(9 \) \(-9 \) \(\dfrac{1}{9} \)
    two shifts of growth
  3. The graph of \(f\) is reflected about the \(x\)-axis; the graph of \(g\) is reflected about the \(y\)-axis.

19.

Answer.
  1. \(3(5^{a+2})\) is not equivalent to \(9\cdot 3(5^a)\text{.}\)
  2. \(3(5^{2a})\) is not equivalent to \(2\cdot 3 (5^a)\text{.}\)

21.

Answer.
  1. \(8^w - 8^z\) is not equivalent to \(8^{w-z}\text{.}\)
  2. \(8^{-x}\) is equivalent to \(\dfrac{1}{8^x}\text{.}\)

23.

Answer.
  1. \(\displaystyle P_0=300\)
  2. \(x\) \(0\) \(1\) \(2\)
    \(f(x)\) \(300\) \(600\) \(1200\)
  3. \(\displaystyle b=2\)
  4. \(\displaystyle f(x)=300(2)^x \)

25.

Answer.
  1. \(\displaystyle S_0=150\)
  2. \(\displaystyle b\approx 0.55\)
  3. \(\displaystyle S(d) = 150(0.55)^d\)

27.

Answer.
\(\dfrac{2}{3} \)

29.

Answer.
\(\dfrac{-1}{4} \)

31.

Answer.
\(\dfrac{1}{7} \)

33.

Answer.
\(\dfrac{-5}{4} \)

35.

Answer.
\(\pm 2 \)

37.

Answer.
  1. \(\displaystyle N(t) = 26(2)^{t/6}\)
  2. GC growth
  3. \(72\) days later

39.

Answer.
  1. \(\displaystyle V(t) = 700(0.7)^{t/2}\)
  2. GC decay
  3. \(4\) yr

41.

Answer.
\(x = 2.26\)

43.

Answer.
\(x = -1.40\)

45.

Answer.
  1. Power
  2. Exponential
  3. Power
  4. Neither

47.

Answer.
  1. Exponential \(y=3\cdot 2^x\)
  2. Power \(P=0.5 t^2\)

49.

Answer.
  1. Power \(y=100 x^{-1}\)
  2. Exponential \(P=\frac{1}{4} \cdot 2^x\)

51.

Answer.
\(x\) \(f(x)=x^2\) \(g(x)=2^x \)
\(-2\) \(4\) \(\frac{1}{4} \)
\(-1\) \(1\) \(\frac{1}{2} \)
\(0\) \(0\) 1
\(1\) \(1\) \(2\)
\(2\) \(4\) \(4\)
\(3\) \(9\) \(8\)
\(4\) \(16\) \(16\)
\(5\) \(25\) \(32\)
exponential growth and qudratic
  1. Range of \(f\text{:}\) \([0, \infty)\text{;}\) Range of \(g\text{:}\) \((0, \infty)\)
  2. \(\displaystyle 3\)
  3. \(-0.7667\text{,}\) \(2\text{,}\) \(4\)
  4. \((-0.7667, 2) \) and \((4,\infty)\)
  5. g

53.

Answer.
  1. \(y = 3^x - 4\)
    shifted growth
    Domain: \((-\infty, \infty)\text{;}\) range: \((-4, \infty)\text{,}\) \(x\)-intercept \((1.26, 0)\text{;}\) \(y\)-intercept \((0, -3)\text{;}\) horizontal asymptote \(y=-4\)
  2. \(y=3^{x-4}\text{,}\)
    growth
    Domain: \((-\infty, \infty)\text{;}\) range: \((0, \infty)\text{,}\) no \(x\)-intercept; \(y\)-intercept \(\left(0, \dfrac{1}{81}\right)\text{;}\) the \(x\)-axis is the horizontal asymptote.
  3. \(y=-4\cdot 3^{x}\text{,}\)
    growth reflected
    Domain: \((-\infty, \infty)\text{;}\) range: \((-\infty, 0)\text{,}\) no \(x\)-intercept; \(y\)-intercept \((0, -4)\text{;}\) the \(x\)-axis is the horizontal asymptote.

55.

Answer.
  1. \(y =-6^t\)
    reflected growth
    Domain: \((-\infty, \infty)\text{;}\) range: \((-\infty, 0)\text{,}\) no \(t\)-intercept; \(y\)-intercept \((0, -1)\text{;}\) the \(t\)-axis is the horizontal asymptote.
  2. \(y=6^{-t}\text{,}\)
    decay
    Domain: \((-\infty, \infty)\text{;}\) range: \((0, \infty)\text{,}\) no \(t\)-intercept; \(y\)-intercept \((0, 1)\text{;}\) the \(t\)-axis is the horizontal asymptote.
  3. \(y=-6^{-t}\text{,}\)
    decay reflected
    Domain: \((-\infty, \infty)\text{;}\) range: \((-\infty, 0)\text{,}\) no \(t\)-intercept; \(y\)-intercept \((0, -1)\text{;}\) the \(t\)-axis is the horizontal asymptote.

57.

Answer.
  1. \(y =2^{x-3}\)
    growth
    Domain: \((-\infty, \infty)\text{;}\) range: \((0, \infty)\text{,}\) no \(x\)-intercept; \(y\)-intercept \(\left(0, \frac{1}{8}\right)\text{;}\) the \(x\)-axis is the horizontal asymptote.
  2. \(y=2^{x-3}+4 \text{,}\)
    shifted growth
    Domain: \((-\infty, \infty)\text{;}\) range: \((4, \infty)\text{,}\) no \(x\)-intercept; \(y\)-intercept \(>\left(0, \frac{33}{8}\right)\text{;}\) horizontal asymptote \(y=4\)

59.

Answer.
  1. \(y =-\left(\dfrac{1}{2}\right)^t\)
    reflected decay
    Domain: \((-\infty, \infty)\text{;}\) range: \((-\infty, 0)\text{,}\) no \(t\)-intercept; \(y\)-intercept \((0, -1)\text{;}\) the \(t\)-axis is the horizontal asymptote.
  2. \(y=6-\left(\dfrac{1}{2} \right)^t \text{,}\)
    shifted reflected decay
    Domain: \((-\infty, \infty)\text{;}\) range: \((-\infty,6)\text{,}\) \(t\)-intercept approximately \((-2.58,0)\text{;}\) \(y\)-intercept \((0, 5)\text{;}\) horizontal asymptote is \(y=6\)

61.

Answer.
  1. The graph of \(y = 2^x\) has been reflected about the \(y\)-axis and shifted up \(2\) units.
  2. \(\displaystyle y=2^{-x}+2 \)

63.

Answer.
  1. The graph of \(y = 2^x\) has been reflected about the \(x\)-axis and shifted up \(10\) units.
  2. \(\displaystyle y=-2^{x}+10 \)

65.

Answer.
  1. I
  2. III
  3. II

67.

Answer.
  1. \(t\) \(3.5\) \(4\) \(8\) \(10\) \(15\)
    \(f(t)\) \(128\) \(154.75\) \(184.05\) \(150.93\) \(103.96\)
  2. piecewise
  3. From \(0\) to \(3\) minutes, the volunteer is walking with heart rate \(100\) beats per minute. The volunteer jogged at a steady pace from \(3\) to \(4\) minutes, and the heart rate increased to about \(155\) beats per minutes. From \(4\) to \(9\) minutes, the jogging pace increased, and the heart rate rose to about \(185\) beats per minute. The cooldown started at \(9\) minutes, and the heart rate decreased rapidly and leveled off to about \(100\) beats per minute.

4.3 Logarithms
Homework 4.3

1.

Answer.
  1. \(\displaystyle 2\)
  2. \(\displaystyle 5\)

3.

Answer.
  1. \(\displaystyle \dfrac{1}{2} \)
  2. \(\displaystyle -1\)

5.

Answer.
  1. \(\displaystyle 1 \)
  2. \(\displaystyle 0 \)

7.

Answer.
  1. \(\displaystyle 5 \)
  2. \(\displaystyle 6 \)

9.

Answer.
  1. \(\displaystyle -1 \)
  2. \(\displaystyle -3 \)

11.

Answer.
\(\log_2 1024=10\)

13.

Answer.
\(\log_{10} 5\approx 0.699\)

15.

Answer.
\(\log_{t} 16=\dfrac{3}{2} \)

17.

Answer.
\(\log_{0.8} M=1.2 \)

19.

Answer.
\(\log_{x} (W-3)=5t \)

21.

Answer.
\(\log_{3} (2N_0)=-0.2t \)

23.

Answer.
  1. \(\displaystyle \log_4 2.5 \)
  2. \(\displaystyle 0.7\)

25.

Answer.
  1. \(\displaystyle \log_{10} 0.003 \)
  2. \(\displaystyle -2.5\)

27.

Answer.
  1. \(\displaystyle 0\lt \log_{10} 7 \lt 1\)
  2. \(\displaystyle 0.85\)

29.

Answer.
  1. \(\displaystyle 3\lt \log_{3} 67.9 \lt 4\)
  2. \(\displaystyle 3.84\)

31.

Answer.
  1. \(\displaystyle 0.7348\)
  2. \(\displaystyle 1.7348\)
  3. \(\displaystyle 2.7348\)
  4. \(\displaystyle 3.7348\)
When the input to the common logarithm is multiplied by \(10\text{,}\) the output is increased by \(1\text{.}\)

33.

Answer.
  1. \(\displaystyle 0.3010\)
  2. \(\displaystyle 0.6021\)
  3. \(\displaystyle 0.9031\)
  4. \(\displaystyle 1.2041\)
When the input to the common logarithm is doubled, the output is increased by about \(0.3010\text{.}\)

35.

Answer.
\(-0.23\)

37.

Answer.
\(2.53\)

39.

Answer.
\(0.77\)

41.

Answer.
\(-0.68\)

43.

Answer.
\(3.63\)

45.

Answer.
\(2\cdot 5^x\ne 10^x\text{;}\) the first step should be to divide both sides of the equation by \(2\text{;}\) \(x = \log_5 424\text{.}\)

47.

Answer.
\(\frac{10^{4x}}{4} \ne 10^x\text{;}\) the first step should be to write \(4x = \log 20\text{;}\) \(x = \frac{\log 20}{4}\text{.}\)

49.

Answer.
  1. \(\displaystyle 33,855,812\)
  2. \(38,515,295\text{;}\) \(~41,080,265\text{;}\) \(~43,816,051\)
  3. \(\displaystyle 2002\)
  4. \(\displaystyle 2012\)
  5. exponential growth

51.

Answer.
  1. \(\displaystyle 85.5\)
  2. Decreasing; range: \([5.4, 1355.2]\)
    exponential decay
  3. \(\displaystyle 1.45\)
  4. \(\displaystyle \dfrac{1}{100} \)
  5. \(\displaystyle 10^{0.4}\approx 2.5119 \)
  6. \(2.15\times 10^{-6}\) to \(855,067\)

53.

Answer.
\(9.60\) in

55.

Answer.
\(1.91\) mi

57.

Answer.
\(3.34\) mi

59.

Answer.
\(1\)

61.

Answer.
\(0\)

63.

Answer.
\(1\)

65.

Answer.
\(0\)

4.4 Properties of Logarithms
Homework 4.4

1.

Answer.
  1. \(\displaystyle 10^8 \)
  2. \(2\text{;}\) \(~6\text{;}\) \(~8\text{;}\) \(~2+6=8\)

3.

Answer.
  1. \(\displaystyle b^3 \)
  2. \(8\text{;}\) \(~5\text{;}\) \(~3\text{;}\) \(~8-5=3\)

5.

Answer.
  1. \(\displaystyle 10^{15} \)
  2. \(15\text{;}\) \(~3\text{;}\) \(~15=3\cdot 5\)

7.

Answer.
  1. \(\displaystyle \log_b 2 + \log_b x\)
  2. \(\displaystyle \log_b 2 - \log_b x\)

9.

Answer.
  1. \(\displaystyle 1 + 4\log_3 x\)
  2. \(\displaystyle \dfrac{1}{t}\log_5 1.1 \)

11.

Answer.
  1. \(\displaystyle \dfrac{1}{2} + \dfrac{1}{2}\log_b x\)
  2. \(\displaystyle \dfrac{1}{3}\log_3 (x^2+1) \)

13.

Answer.
  1. \(\displaystyle \log P_0 + t\log (1-m) \)
  2. \(\displaystyle 4t [\log_4(4+r)-1] \)

15.

Answer.
  1. \(\displaystyle \log_b 4\)
  2. \(\displaystyle \log_4(x^2y^3) \)

17.

Answer.
  1. \(\displaystyle \log 2x^{5/2} \)
  2. \(\displaystyle \log (t-4) \)

19.

Answer.
  1. \(\displaystyle \log \dfrac{1}{27} \)
  2. \(\displaystyle \log_6 (2w^2) \)

21.

Answer.
  1. \(\displaystyle 1.7917\)
  2. \(\displaystyle -0.9163\)

23.

Answer.
  1. \(\displaystyle 2.1972\)
  2. \(\displaystyle 1.9560\)

25.

Answer.
\(2.8074\)

27.

Answer.
\(0.8928\)

29.

Answer.
\(\pm 1.3977\)

31.

Answer.
\(-1.6092\)

33.

Answer.
\(0.2736\)

35.

Answer.
\(-12.4864\)

37.

Answer.
  1. \(\displaystyle S (t) = S_0(1.09)^t\)
  2. \(4.7\) hours

39.

Answer.
  1. \(\displaystyle C (t) = 0.7(0.80)^t\)
  2. After \(2.5\) hours
  3. decay

41.

Answer.
  1. \(\displaystyle J(t) = 1,041,000\cdot 1.0182^t\)
  2. In \(2040\)

43.

Answer.
  1. \(\displaystyle S(t) = S_0 \cdot 0.9527^t\)
  2. \(28.61\) hours

45.

Answer.
  1. \(\displaystyle 5\)
  2. \(\displaystyle 6\)
  3. \(\displaystyle 5\)
(a) and (c) are equal.

47.

Answer.
  1. \(\displaystyle 6\)
  2. \(\displaystyle 9\)
  3. \(\displaystyle 6\)
(a) and (c) are equal.

49.

Answer.
  1. \(\displaystyle \log 24\approx 1.38\)
  2. \(\displaystyle \log 240\approx 2.38\)
  3. \(\displaystyle \log 230\approx 2.36\)
None are equal.

51.

Answer.
  1. \(\displaystyle \log 60\approx 1.78\)
  2. \(\displaystyle \log 5\approx 0.70\)
  3. \(\displaystyle \dfrac{\log_{10}75}{\log_{10}15}\approx 1.59\)
None are equal.

53.

Answer.
\(12.9\%\)

55.

Answer.
About \(11\) years

57.

Answer.
  1. \(\displaystyle A=1000\left(1+\dfrac{0.12}{n} \right)^{5n} \)
  2. table
    \(A\) increases.
  3. \(16\text{;}\) \(31\text{;}\) \(553\)
  4. Increasing, concave down, asymptotically approaching \(A\approx 1822.12\)

59.

Answer.
\(k=\dfrac{1}{t}\dfrac{\log(N/N_0)}{\log a} \)

61.

Answer.
\(t=\dfrac{1}{k}\log\left(\dfrac{A}{A_0}+1\right) \)

63.

Answer.
\(q=\dfrac{\log(w/p)}{\log v} \)

65.

Answer.
  1. \(x=b^m \text{,}\) \(y=b^n\)
  2. \(\displaystyle \log_b(b^m\cdot b^n)\)
  3. \(\displaystyle \log_b(b^m\cdot b^n)=\log_b b^{m+n} \)
  4. \(\displaystyle \log_b b^{m+n}=m+n \)
  5. \(\displaystyle \log_b b^{m+n}=(\log_b x)+(\log_b y) \)

67.

Answer.
  1. \(\displaystyle x=b^m \)
  2. \(\displaystyle \log_b(b^m)^k\)
  3. \(\displaystyle \log_b(b^m)^k=\log_b b^{mk} \)
  4. \(\displaystyle \log_b b^{mk}=mk \)
  5. \(\displaystyle \log_b b^{mk}=(\log_b x)\cdot k \)

4.5 Exponential Models
Homework 4.5

1.

Answer.
\(A(x) = 0.14(50)^{x/3}\)

3.

Answer.
\(f(x) = \dfrac{65,536}{729}\left(\dfrac{3}{4} \right)^x \)

5.

Answer.
\(M(x) = 62,500(0.2)^x \)

7.

Answer.
\(s(x) = \dfrac{1}{135}(9)^x \)

9.

Answer.
\(y=\dfrac{4}{3}(3)^{x/4}\)

11.

Answer.
\(y=50(2)^{-x/4} \)

13.

Answer.
  1. \(\displaystyle y= 2.6 -1.3x\)
  2. \(\displaystyle y = 2.6(0.5)^x\)
  3. line and exponential decay

15.

Answer.
  1. \(\displaystyle y= -36-16x \)
  2. \(\displaystyle y = \dfrac{12}{5}(5)^{-x/3} \)
  3. line and exponential decay

17.

Answer.
  1. \(\displaystyle y= 2.5+0.875x \)
  2. \(\displaystyle y = 1.5(2)^{x/2} \)
  3. line and exponential growth

19.

Answer.
  1. \(P = P_0(1.052)^t\text{;}\) \(t\) is the number of years since \(1990\text{.}\)
  2. \(\dfrac{\log 2}{\log 1.052}\approx 13.7 \) years
  3. growth

21.

Answer.
  1. \(GDP = 1.028^t\) million pounds
  2. \(\dfrac{\log 2}{\log 1.028}\approx 25.1 \) years
  3. \(50.2\) years
  4. growth

23.

Answer.
  1. \(\dfrac{\log 0.5}{\log 0.946}\approx 12.5 \) hours
  2. \(25\) hours
  3. decay

25.

Answer.
  1. \(\dfrac{\log 0.5}{\log 0.844}\approx 4.1 \) hours
  2. \(8.2\) hours
  3. decay

27.

Answer.
  1. \(\displaystyle P = 2000(2)^{t/5} \)
  2. \(\displaystyle 14.87\% \)

29.

Answer.
  1. \(\displaystyle D = D_0 \left(\dfrac{1}{2} \right)^{t/18} \)
  2. \(\displaystyle 3.78\% \)

31.

Answer.
  1. \(\displaystyle A = A_0 \left(\dfrac{1}{2} \right)^{t/1620 }\)
  2. \(\displaystyle 0.043\%\)

33.

Answer.
  1. \(\displaystyle P = P_0 (2)^{t/25 }\)
  2. \(\displaystyle 2.81\%\)

35.

Answer.
  1. \(\displaystyle ab^D = 2\cdot ab^0 = 2a\)
  2. \(\displaystyle b^D=2\)
  3. \(\displaystyle f (t + D) = ab^{t+D} = a\cdot b^t\cdot b^D = ab^t\cdot 2 = 2 f (t)\)
  4. For any value of \(t\text{,}\) after \(D\) units of time, the new value of \(f\) is \(2\) times the old value.

37.

Answer.
  1. \(\displaystyle ab^R = \frac{1}{3} \cdot ab^0 = \frac{1}{3} a\)
  2. \(\displaystyle b^R=\frac{1}{3} \)
  3. \(\displaystyle g(t + R) = ab^{t+R} = a\cdot b^t\cdot b^R = ab^t\cdot \frac{1}{3} = \frac{1}{3} g(t)\)
  4. For any value of \(t\text{,}\) after \(R\) units of time, the new value of \(g\) is \(\frac{1}{3} \) times the old value.

39.

Answer.
  1. \(\displaystyle A = A_0 \left(\dfrac{1}{2} \right)^{t/5730}\)
  2. About \(760\) years old

41.

Answer.
  1. \(\displaystyle A = A_0 \left(\dfrac{1}{2} \right)^{t/432}\)
  2. About \(220\) years

43.

Answer.
\(\approx 30\) years; \(\approx 33\) years

45.

Answer.
$\(445.89\text{;}\) $\(376.50\)

47.

Answer.
  1. \(\displaystyle N(t) = 2200(2)^{t/1.5}\)
  2. The given model has a smaller growth factor, \(1.356\text{,}\) than \(2^{1/1.5}\approx 1.59\text{.}\)
  3. Name of chip Year Moore’s
    law
    \(N(t)\) Actual
    number
    Pentium IV \(2000\) \(2,306,867,200\) \(20,427,413\) \(42,000,000\)
    Pentium M (Banias) \(2003\) \(9,227,468,800\) \(50,932,200\) \(77,000,000\)
    Pentium M (Dothan) \(2004\) \(14,647,693,680\) \(69,064,063\) \(140,000,000\)
  4. About \(2.3\) years

4.6 Chapter Summary and Review
Chapter 4 Review Problems

1.

Answer.
  1. \(\displaystyle D = 8(1.5)^{t/5}\)
  2. \(18\text{;}\) \(44\)

3.

Answer.
  1. \(\displaystyle M = 100(0.85)^t\)
  2. \(52.2\) mg; \(19.7\) mg

5.

Answer.
\(16n^{2x+10}\)

7.

Answer.
\(\dfrac{1}{m^{x+2}} \)

9.

Answer.
\(g(t)=16(0.85)^t \)

11.

Answer.
\(f (x) = 500\left(\dfrac{1}{5}\right)^x\)

13.

Answer.
\(4.8\%\) loss

15.

Answer.
\(6\%\) loss

17.

Answer.
  1. growth
  2. \(y\)-intercept \((0, 6)\text{;}\) asymptote: \(y = 0\)
  3. \(\displaystyle [3.472, 10.368]\)

19.

Answer.
  1. growth
  2. \(x\)-intercept \(\left(\frac{\log 3}{\log 2}, 0 \right) \text{;}\) \(y\)-intercept \((0, -2)\text{;}\) asymptote: \(y = -3\)
  3. \(\displaystyle [-2.875,5]\)

21.

Answer.
\(\dfrac{-4}{3}\)

23.

Answer.
\(-11\)

25.

Answer.
  1. two growth functions
    Not (quite) equivalent
  2. \(\displaystyle 2^{1/8}\approx 1.090507733\gt 1.0905 \)

27.

Answer.
  1. two growth functions
    Equivalent
  2. \(\displaystyle \left(\dfrac{1}{3} \right)^{x-2} =\left(\dfrac{1}{3} \right)^{x}\cdot \left(\dfrac{1}{3} \right)^{-2} =\left(\dfrac{1}{3} \right)^{x}\cdot 9 \)

29.

Answer.
  1. \(\displaystyle y = 4 + 2^{x+1}\)
  2. Shift the graph of \(f~~1\) unit left, \(4\) units up.
    translated growth

31.

Answer.
  1. \(\displaystyle y = 6 - 3\cdot 2^{x}\)
  2. Scale vertically by \(3\text{,}\) reflect about \(x\)-axis, shift \(6\) units up.
    transformed growth

33.

Answer.
power and exponential
\(g\) eventually grows faster.

35.

Answer.
\(2^{1.5}\approx 2.83\text{;}\) \(2.25\)

37.

Answer.
\(M = M_0(2)^{t/10}\text{,}\) where \(M\) is the organic content, \(M_0\) is the organic content at \(0\degree\)C, and \(t\) is the temperature in \(\degree\) Celsius.

39.

Answer.
\(4\)

41.

Answer.
\(-1\)

43.

Answer.
\(-3\)

45.

Answer.
\(\log_{0.3}(x + 1) = -2\)

47.

Answer.
\(\dfrac{\log 5.1}{1.3}\approx 0.5433 \)

49.

Answer.
\(\dfrac{\log (2.9/3)}{-0.7}\approx 0.21 \)

51.

Answer.
\(\log_b x + \dfrac{1}{3} \log_b y - 2 \log_b z\)

53.

Answer.
\(\dfrac{4}{3} \log x -\dfrac{1}{3} \log y\)

55.

Answer.
\(\log\sqrt[3] {\dfrac{x}{y^{2}}} \)

57.

Answer.
\(\log {\dfrac{1}{8}} \)

59.

Answer.
\(\dfrac{\log 63}{\log 3}\approx 3.77 \)

61.

Answer.
\(\dfrac{\log 50}{-0.3\log 6}\approx -7.278 \)

63.

Answer.
\(\dfrac{\log(N/N_0)}{k}\)

65.

Answer.
  1. \(\displaystyle 238\)
  2. \(\displaystyle 2010\)

67.

Answer.
  1. \(\displaystyle C = 90(1.06)^t\)
  2. $\(94.48\)
  3. \(5\) years

69.

Answer.
  1. \(7.4\) years
  2. \(\displaystyle 6.1\%\)

71.

Answer.
\(f(x)\approx 1600(1.035)^x \)

73.

Answer.
\(g(x)\approx 600(0.075)^x \)

75.

Answer.
  1. \(\dfrac{\log 2}{\log 1.001}\approx 693 \) years
  2. \(105\) years

77.

Answer.
\(17\%\)

79.

Answer.
$\(2192.78\)

81.

Answer.
  1. Day \(1\) \(2\) \(3\) \(\cdots\) \(t\) \(\cdots\) \(30\)
    Wage (cent) \(2\) \(4\) \(8\) \(\cdots\) \(2^t\) \(\cdots\) \(2^{30}\)
  2. \(W(t)=2^t\) cents
  3. $\(327.68\text{;}\) $\(10,737,418.24\)

5 Logarithmic Functions
5.1 Inverse Functions
Homework 5.1

1.

Answer.
  1. \(x\) \(-1\) \(0\) \(1\) \(2\)
    \(f(x)\) \(0\) \(1\) \(-2\) \(-1\)
    \(y\) \(0\) \(1\) \(-2\) \(-1\)
    \(f^{-1}(y) \) \(-1\) \(0\) \(1\) \(2\)
  2. \(\displaystyle f^{-1}(1)=0 \)
  3. \(\displaystyle f^{-1}(-1)=2 \)

3.

Answer.
  1. \(x\) \(-1\) \(0\) \(1\) \(2\)
    \(f(x)\) \(-1\) \(1\) \(3\) \(11\)
    \(y\) \(-1\) \(1\) \(3\) \(11\)
    \(f^{-1}(y) \) \(-1\) \(0\) \(1\) \(2\)
  2. \(\displaystyle f^{1}(1)=0 \)
  3. \(\displaystyle f^{-1}(3)=1 \)

5.

Answer.
  1. \(f (60)\approx 38\text{.}\) The car that left the \(60\)-foot skid marks was traveling at \(38\) mph.
  2. \(f^{-1} (60) \approx 150\text{.}\) The car traveling at \(60\) mph left \(150\)-foot skid marks

7.

Answer.
  1. \(\displaystyle (60~ \text{hours}, 78~ \text{grams})\)
  2. \(f^{-1} (90) \approx 19\text{,}\) so that the vampire bat’s weight has dropped to \(90\) grams about \(19\) hours after its last meal.

9.

Answer.
  1. \(g (0.05) = 0.28\text{.}\) At \(5\%\) interest, \(\$1\) earns \(\$0.28\) interest in \(5\) years.
  2. \(\displaystyle 8.45\%\)
  3. \(\displaystyle g^{-1} (I ) = (I + 1)^{1/5} -1\)
  4. \(\displaystyle g^{-1} (0.50)\approx 0.0845\)

11.

Answer.
  1. \(f(0.5) \approx 62.9\text{.}\) At an altitude of \(0.5\) miles, you can see \(62.9\) miles to the horizon.
  2. \(0.0126\) mile, or \(66.7\) feet
  3. \(\displaystyle h = f^{-1}(d) =\dfrac{d^2}{7920} \)
  4. \(\displaystyle f^{-1} (10)\approx 0.0126\)

13.

Answer.
  1. \(\displaystyle h^{-1} (3)\approx -4\)
  2. \(h^{-1} (x)= 5 - x^2\text{;}\) \(~ h^{-1} (3) = -4\)

15.

Answer.
  1. \(\displaystyle f^{-1} (y) = 3 \sqrt[3]{y} + 2\)
  2. \(\displaystyle f^{-1} ( f (4)) = f^{-1} (8) = 4\)
  3. \(\displaystyle f ( f^{-1} (-8)) = f (0) = -8\)
  4. cubic and inverse

17.

Answer.
\(6\)

19.

Answer.
\(\dfrac{2}{9} \)

21.

Answer.
\(4 \)

23.

Answer.
  1. \(x\) \(0\) \(6\)
    \(y\) \(300\) \(1200\)
  2. \(x\) \(300\) \(1200\)
    \(y\) \(0\) \(6\)
    line

25.

Answer.
  1. \(x\) \(0\) \(1\) \(2\)
    \(y\) \(5\) \(20\) \(100\)
  2. \(x\) \(5\) \(20\) \(100\)
    \(y\) \(0\) \(1\) \(2\)
    line

27.

Answer.
  1. \(\displaystyle f^{-1}(x)=\dfrac{x+6}{2} \)
  2. function and inverse

29.

Answer.
  1. \(\displaystyle f^{-1}(x)=\sqrt[3]{x-1} \)
  2. function and inverse

31.

Answer.
  1. \(\displaystyle f^{-1}(x)=\dfrac{1}{x}+1 \)
  2. function and inverse

33.

Answer.
  1. Domain: \((-\infty, 4]\text{;}\) Range: \([0,\infty)\)
  2. \(\displaystyle g^{-1}(x)=4-x^2 \)
  3. Domain: \([0,\infty)\text{;}\) Range: \((-\infty,4]\)
  4. function and inverse

35.

Answer.
(a) and (d)

37.

Answer.
(a)

39.

Answer.
(a)

41.

Answer.
(a) and (b)

43.

Answer.
  1. \(f(x)=4+2x \text{;}\) IV
  2. \(f(x)=2-\dfrac{x}{2} \text{;}\) III
  3. \(f(x)=-4-2x \text{;}\) I
  4. \(f(x)=\dfrac{x}{2} \text{;}\) II

45.

Answer.
  1. III
  2. II
  3. I

5.2 Logarithmic Functions
Homework 5.2

1.

Answer.
  1. \(x\) \(-1\) \(0\) \(1\) \(2\)
    \(2^x\) \(\frac{1}{2} \) \(1\) \(2\) \(4\)
    \(x\) \(\frac{1}{2} \) \(1\) \(2\) \(4\)
    \(\log_2 x\) \(-1\) \(0\) \(1\) \(2\)
  2. exponential and log functions

3.

Answer.
  1. \(x\) \(-2\) \(-1\) \(0\) \(1\)
    \(\left(\frac{1}{3}\right)^x\) \(9\) \(3\) \(1\) \(\frac{1}{3} \)
    \(x\) \(9\) \(3\) \(1\) \(\frac{1}{3} \)
    \(\log_{1/3} x\) \(-2\) \(-1\) \(0\) \(1\)
  2. exponential and log functions

5.

Answer.
  1. \(\displaystyle x=10,000\)
  2. \(\displaystyle x=10^{8} \)

7.

Answer.
\(0\lt x \lt 0.01\)

9.

Answer.
  1. \(\displaystyle \log 100,322\approx 5.001\)
  2. \(\displaystyle \log 693\approx 2.841\)

11.

Answer.
  1. \(\log (-7)\) is undefined.
  2. \(\displaystyle 6 \log 28\approx 8.683\)

13.

Answer.
  1. \(\displaystyle 15.614\)
  2. \(\displaystyle 0.419\)

15.

Answer.
  1. \(\displaystyle 81\)
  2. \(\displaystyle 4\)
  3. Definition of logarithm base \(3\)
  4. \(\displaystyle 1.8\)
  5. \(\displaystyle a\)

17.

Answer.
  1. \(\displaystyle 2^8\)
  2. \(\displaystyle -2\)

19.

Answer.
  1. \(\displaystyle 2k\)
  2. \(\displaystyle x^3\)
  3. \(\displaystyle \sqrt{x} \)
  4. \(\displaystyle 2m\)

21.

Answer.
  1. \(\displaystyle (9,\infty) \)
  2. \(\displaystyle f^{-1} (x) = 3^{x-4} + 9 \)

23.

Answer.
  1. \(\displaystyle f^{-1}(x)= \log_4 (100 - x) - 2 \)
  2. \(\displaystyle f^{-1} (f(1)) = f^{-1}(36)=\log_4(64)-2=1 \)
  3. \(\displaystyle f\left(f^{-1} (84)\right)= f (0) = 100 - 4^2 = 84\)

25.

Answer.
  1. IV
  2. I
  3. II
  4. III

27.

Answer.
  1. data points and log curve
  2. The graph resembles a logarithmic function. The (translated) log function is close to the points but appears too steep at first and not steep enough after \(n = 15\text{.}\) Overall, it is a good fit.
  3. \(f\) grows (more and more slowly) without bound. \(f\) will eventually exceed \(100\) per cent, but no one can forget more than \(100\%\) of what is learned.

29.

Answer.
  1. \(\displaystyle 10^{1.41}\approx 25.704 \)
  2. \(\displaystyle 10^{-1.69}\approx 0.020417 \)
  3. \(\displaystyle 10^{0.52}\approx 3.3113 \)

31.

Answer.
\(16^w = 256\)

33.

Answer.
\(b^{-2} = 9\)

35.

Answer.
\(10^{-2.3} = A\)

37.

Answer.
\(u^{w} = v\)

39.

Answer.
\(b=2\)

41.

Answer.
\(b=100\)

43.

Answer.
\(x=11\)

45.

Answer.
\(x=7^{2/3} \)

47.

Answer.
\(x=4\)

49.

Answer.
\(x=11\)

51.

Answer.
\(x=3\)

53.

Answer.
No solution

55.

Answer.
\(A=k(10^{t/T}-1) \)

57.

Answer.
\(s=\dfrac{b^{N/N_0}}{k} \)

59.

Answer.
\(H=(H_0)^{kM^2} \)

61.

Answer.
  1. II
  2. VI
  3. III
  4. V
  5. I
  6. IV

63.

Answer.
  1. bell
    No inverse function
  2. catenary
    No inverse function

65.

Answer.
translated log
The functions are equal.

67.

Answer.
translated log
The functions are equal.

69.

Answer.
  1. \(x\) \(x^2\) \(\log_{10}x\) \(\log_{10}x^2 \)
    \(1\) \(1\) \(0\) \(0\)
    \(2\) \(4\) \(0.301\) \(0.602\)
    \(3\) \(9\) \(0.477\) \(0.954\)
    \(4\) \(16\) \(0.602\) \(1.204\)
    \(5\) \(25\) \(0.699\) \(1.398\)
    \(6\) \(36\) \(0.778\) \(1.556\)
  2. \(\displaystyle \log_{10}x^2=2\log_{10}x \)

71.

Answer.
\(x\) \(y=\log_e x \)
\(1\) \(0\)
\(2\) \(0.693\)
\(4\) \(1.386\)
\(16\) \(2.772\)
\(\frac{1}{2} \) \(-0.693\)
\(\frac{1}{4} \) \(-1.386\)
\(\frac{1}{16} \) \(-2.772\)
log base e

5.3 The Natural Base
Homework 5.3

1.

Answer.
\(x\) \(-10\) \(-5\) \(0\) \(5\) \(10\) \(15\) \(20\)
\(f(x)\) \(0.135\) \(0.368\) \(1\) \(2.718\) \(7.389\) \(20.086\) \(54.598\)
growth

3.

Answer.
\(x\) \(-10\) \(-5\) \(0\) \(5\) \(10\) \(15\) \(20\)
\(f(x)\) \(20.086\) \(4.482\) \(1\) \(0.223\) \(0.05\) \(0.011\) \(0.00248\)
decay

5.

Answer.
  1. \(\displaystyle 2\)
  2. \(\displaystyle 5t\)
  3. \(\displaystyle \dfrac{1}{x} \)
  4. \(\displaystyle \dfrac{1}{2} \)

7.

Answer.
  1. \(\displaystyle 0.64\)
  2. \(\displaystyle 3.81\)
  3. \(\displaystyle -1.20\)

9.

Answer.
  1. \(\displaystyle 4.14\)
  2. \(\displaystyle 1.88\)
  3. \(\displaystyle 0.07\)

11.

Answer.
  1. \(\displaystyle N(t)=6000e^{0.04t} \)
  2. \(t\) \(0\) \(5\) \(10\) \(15\) \(20\) \(25\) \(30\)
    \(N(t)\) \(6000\) \(7328\) \(8951\) \(10,933\) \(13,353\) \(16,310\) \(19,921\)
  3. growth
  4. \(\displaystyle 15,670\)
  5. \(70.3\) hrs

13.

Answer.
  1. decay
  2. \(941.8\) lumens
  3. \(2.2\) cm

15.

Answer.
\(P (t) = 20\left(e^{0.4} \right)^t \approx 20\cdot 1.492^t\text{;}\) increasing; initial value \(20\)

17.

Answer.
\(P (t) = 6500\left(e^{-2.5} \right)^t \approx 6500\cdot 0.082^t\text{;}\) decreasing; initial value \(6500\)

19.

Answer.
  1. \(x\) \(0\) \(0.5\) \(1\) \(1.5\) \(2\) \(2.5\)
    \(e^x\) \(1 \) \(1.6487\) \(2.7183\) \(4.4817\) \(7.3891\) \(12.1825\)
  2. Each ratio is \(e^{0.5} \approx 1.6487\text{:}\) Increasing \(x\)-values by a constant \(\Delta x = 0.5\) corresponds to multiplying the \(y\)-values of the exponential function by a constant factor of \(e^{\Delta x}\text{.}\)

21.

Answer.
  1. \(x\) \(0\) \(0.6931\) \(1.3863\) \(2.0794\) \(2.7726\) \(3.4657\) \(4.1589\)
    \(e^x\) \(1 \) \(2\) \(4\) \(8\) \(16\) \(32\) \(64\)
  2. Each difference in \(x\)-values is approximately \(\ln 2\approx 0.6931\text{:}\) Increasing \(x\)-values by a constant \(\Delta x = \ln 2\) corresponds to multiplying the \(y\)-values of the exponential function by a constant factor of \(e^{\Delta x} = e^{\ln 2} = 2\text{.}\) That is, each function value is approximately equal to double the previous one.

23.

Answer.
\(0.8277\)

25.

Answer.
\(-2.9720\)

27.

Answer.
\(1.6451\)

29.

Answer.
\(-3.0713\)

31.

Answer.
\(t=\dfrac{1}{k}\ln y \)

33.

Answer.
\(t=\ln \left(\dfrac{k}{k-y}\right) \)

35.

Answer.
\(k=e^{T/T_0}-10 \)

37.

Answer.
  1. \(n\) \(0.39\) \(3.9\) \(39\) \(390\)
    \(\ln n\) \(-0.942 \) \(1.361 \) \(3.664 \) \(5.966 \)
  2. Each difference in function values is approximately \(\ln 10\approx 2.303\text{:}\) Multiplying \(x\)-values by a constant factor of \(10\) corresponds to adding a constant value of ln 10 to the \(y\)-values of the natural log function.

39.

Answer.
  1. \(n\) \(2\) \(4\) \(8\) \(16\)
    \(\ln n\) \(0.693 \) \(1.386 \) \(2.079 \) \(2.773 \)
  2. Each quotient equals \(k\text{,}\) where \(n = 2^k\text{.}\) Because \(\ln n = \ln 2^k = k\cdot \ln 2\text{,}\) \(k = \dfrac{\ln n}{\ln 2}\text{.}\)

41.

Answer.
  1. \(\displaystyle N (t) = 100e^{(\ln 2)t}\approx 100e^{0.6931t}\)
  2. growth

43.

Answer.
  1. \(\displaystyle N (t) = 1200e^{(\ln 0.6)t}\approx 1200e^{-0.5108t}\)
  2. decay

45.

Answer.
  1. \(\displaystyle N (t) = 10e^{(\ln 1.15)t}\approx 10e^{0.1398t}\)
  2. growth

47.

Answer.
  1. \(\displaystyle 20,000\)
  2. \(\displaystyle \left(\dfrac{35,000}{20,000} \right)^{1/10}\approx e^{0.056} \)
  3. \(\displaystyle P(t) = 20,000e^{0.056t} \)
  4. \(\displaystyle 107,188\)

49.

Answer.
  1. \(\displaystyle \left(\dfrac{385}{500} \right)^{1/2}\approx e^{-0.1307} \)
  2. \(\displaystyle N(t) = 500e^{-0.1307t} \)
  3. \(135.3\) mg

51.

Answer.
  1. \(\displaystyle A(t) = 500e^{0.095t}\)
  2. \(7.3\) years
  3. \(7.3\) years
d–e
growth with marked doubling time

53.

Answer.
  1. \(6\) hours
  2. \(6\) hours
  3. decay with marked half-life

55.

Answer.
  1. \(\frac{1}{2}N_0 \text{,}\) \(\frac{1}{4}N_0 \text{,}\) \(\frac{1}{16}N_0\)
  2. decay
  3. \(\displaystyle N (t) = N_0e^{-0.0866t}\)

57.

Answer.
  1. decay fit on data
    \(\displaystyle y = 116 (0.975)^t\)
  2. \(\displaystyle G (t) = 116e^{-0.025t}\)
  3. \(28\) minutes

5.4 Logarithmic Scales
Homework 5.4

1.

Answer.
  1. log scale
  2. log scale

3.

Answer.
logscale

5.

Answer.
\(1.58\text{,}\) \(6.31\text{,}\) \(15.8\text{,}\) \(63.1\)

7.

Answer.
\(1\text{,}\) \(80\text{,}\) \(330\text{,}\) \(1600\text{,}\) \(7000\text{,}\) \(4\times 10^7\)

9.

Answer.
pH on log scale

11.

Answer.
Proxima Centauri: \(15.5\text{;}\) Barnard: \(13.2\text{;}\) Sirius: \(1.4\text{;}\) Vega: \(0.6\text{;}\) Arcturus: \(-0.4\text{;}\) Antares: \(-4.7\text{;}\) Betelgeuse: \(-7.2\)

13.

Answer.
  1. \(\displaystyle 1\)
  2. \(\displaystyle 0.5012\)
  3. \(\displaystyle 0.1259\)
  4. \(\displaystyle 0.01\)
  5. \(\displaystyle 0.000079\)
  6. \(\displaystyle 3.2\times 10^{-7} \)
  7. \(\displaystyle 2\times 10^{-8} \)
  8. \(\displaystyle 8\times 10^{-10} \)

15.

Answer.
  1. \(\displaystyle 10^{1.75}\approx 56.2341\)
  2. \(\displaystyle 10^{(\log 600)/2}\approx 24.4949 \)

17.

Answer.
\(10^{3.4} \approx 2512\)

19.

Answer.
A: \(a\approx 45\text{,}\) \(p \approx 7.4\%\text{;}\) B: \(a \approx 400\text{,}\) \(p \approx 15\%\text{;}\) C: \(a\approx 6000\text{,}\) \(p\approx 50\%\text{;}\) D: \(a \approx 13000\text{,}\) \(p \approx 45\%\)

21.

Answer.
\(3.2\)

23.

Answer.
\(0.0126\)

25.

Answer.
\(100\)

27.

Answer.
\(6,309,573\) watts per square meter

29.

Answer.
\(1000\)

31.

Answer.
\(12.6\)

33.

Answer.
\(100\)

35.

Answer.
\(\approx 25,000\)

37.

Answer.
\(4.7\)

39.

Answer.
\(53\)

5.5 Chapter Summary and Review
Chapter 5 Review Problems

1.

Answer.
\(y\) \(-1\) \(1\) \(3\) \(11\)
\(x=f^{-1}(y)\) \(-1\) \(0\) \(1\) \(2\)

3.

Answer.
\(y\) \(0\) \(\frac{-1}{3} \) \(-1\) \(-3\)
\(w=g^{-1}(y)\) \(-1\) \(0\) \(1\) \(2\)

5.

Answer.
  1. \(\displaystyle P^{-1}(350)=40\)
  2. \(\displaystyle P^{-1}(100)=0 \)

7.

Answer.
  1. \(\displaystyle f^{-1} (x) = x - 4\)
  2. line and inverse

9.

Answer.
  1. \(\displaystyle f^{-1} (x) =\sqrt[3]{x+1} \)
  2. cubic and inverse

11.

Answer.
  1. \(\displaystyle f^{-1} (x) =\dfrac{1}{x-2} \)
  2. translated reciprocal and inverse

13.

Answer.
\(0\)

15.

Answer.
  1. \(f^{-1} (300) = 200\text{:}\) \(\$200,000\) in advertising results in \(\$300,000\) in revenue.
  2. \(f (A) = 250\) or \(A = f^{-1} (250)\)

17.

Answer.
\(10^z = 0.001\)

19.

Answer.
\(2^{x-2} = 3\)

21.

Answer.
\(b^{3} = 3x+1\)

23.

Answer.
\(n^{p-1} = q\)

25.

Answer.
\(6n\)

27.

Answer.
\(2x+6\)

29.

Answer.
\(-1\)

31.

Answer.
\(\dfrac{1}{2} \)

33.

Answer.
\(4 \)

35.

Answer.
\(\dfrac{-15}{8} \)

37.

Answer.
\(\dfrac{9}{4} \)

39.

Answer.
\(3 \)

41.

Answer.
\(x\approx 1.548 \)

43.

Answer.
\(x\approx 411.58 \)

45.

Answer.
\(x\approx 2.286 \)

47.

Answer.
\(\sqrt{x} \)

49.

Answer.
\(k-3 \)

51.

Answer.
  1. \(\displaystyle P = 7,894,862e^{-0.011t}\)
  2. \(\displaystyle 1.095\%\)

53.

Answer.
  1. $\(1419.07 \)
  2. \(13.9\) years
  3. \(\displaystyle t = 20 \ln\left(\dfrac{A}{1000} \right)\)

55.

Answer.
\(t=\dfrac{-1}{k}\ln\left(\dfrac{y-6}{12} \right) \)

57.

Answer.
\(M=N^{Qt} \)

59.

Answer.
\(P (t) = 750 (1.3771)^t\)

61.

Answer.
\(N(t) = 600 e^{-0.9163t}\)

63.

Answer.
log scale

65.

Answer.
Order \(3\text{:}\) \(17,000\text{;}\) Order \(4\text{:}\) \(5000\text{;}\) Order \(8\text{:}\) \(40\text{;}\) Order \(9\text{:}\) \(11\)

67.

Answer.
\(5\times 10^{-7}\)

69.

Answer.
\(3160\)

6 Quadratic Functions
6.1 Factors and \(x\)-Intercepts
Homework 6.1

1.

Answer.
  1. \(t\) \(0\) \(0.5\) \(1\) \(1.5\) \(2\) \(2.5\) \(3\) \(3.5\) \(4\) \(4.5\) \(5\)
    \(h\) \(300\) \(306\) \(304\) \(294\) \(276\) \(250\) \(216\) \(174\) \(124\) \(66\) \(0\)
  2. parabola
  3. \(306.25\) ft at \(0.625\) sec
  4. \(1.25\) sec
  5. \(5\) sec

3.

Answer.
\(\dfrac{-5}{2} \text{,}\) \(~2\)

5.

Answer.
\(0 \text{,}\) \(~\dfrac{-10}{3} \)

7.

Answer.
\(\dfrac{-3}{4} \text{,}\) \(~-8 \)

9.

Answer.
\(4 \)

11.

Answer.
\(\dfrac{1}{2} \text{,}\) \(~-3\)

13.

Answer.
\(0 \text{,}\) \(~3\)

15.

Answer.
\(1\)

17.

Answer.
\(\dfrac{1}{2} \text{,}\) \(~1 \)

19.

Answer.
\(2 \text{,}\) \(~3 \)

21.

Answer.
\(-1 \text{,}\) \(~2 \)

23.

Answer.
\(-3 \text{,}\) \(~6 \)

25.

Answer.
The 3 graphs have the same \(x\)-intercepts. In general, the graph of \(y = ax^2 + bx + c\) has the same \(x\)-intercepts as the graph of \(y = k(ax^2 + bx + c)\text{.}\)

27.

Answer.
The 3 graphs have the same \(x\)-intercepts. In general, the graph of \(y = ax^2 + bx + c\) has the same \(x\)-intercepts as the graph of \(y = k(ax^2 + bx + c)\text{.}\)

29.

Answer.
\(x^2 + x - 2 = 0\)

31.

Answer.
\(x^2 + 5x = 0\)

33.

Answer.
\(2x^2 + 5x - 3 = 0\)

35.

Answer.
\(8x^2 -10x -3 = 0\)

37.

Answer.
\(f(x) = 0.1(x - 18)(x + 15)\)

39.

Answer.
\(g(x) = -0.08(x - 18)(x + 32)\)

41.

Answer.
  1. \(\displaystyle 10^2 + h^2 = (h + 2)^2\)
  2. \(24\) ft

43.

Answer.
  1. \(\displaystyle h=-16t^2 + 16t + 8\)
  2. \(12\) ft; \(8\) ft
  3. \(11=-16t^2+16t+8\text{;}\) at \(\dfrac{1}{4} \) sec and \(\dfrac{3}{4} \) sec
  4. \(\displaystyle \Delta \text{Tbl}=0.25\)
  5. parabola
  6. \(1.37\) sec

45.

Answer.
  1. Width Length Area
    \(10\) \(170\) \(1700\)
    \(20\) \(160\) \(3200\)
    \(30\) \(150\) \(4500\)
    \(40\) \(140\) \(5600\)
    \(50\) \(130\) \(6500\)
    \(60\) \(120\) \(7200\)
    \(70\) \(110\) \(7700\)
    \(80\) \(100\) \(8000\)
  2. \(l= 180 - x\text{,}\) \(A = 180x - x^2\text{;}\) \(80\) yd by \(100\) yd
  3. \(180x-x^2=8000\text{,}\) \(80\) yd by \(100\) yd, or \(100\) yd by \(80\) yd. There are two solutions because the pasture can be oriented in two directions.

47.

Answer.
  1. \(l = x - 4\text{,}\) \(~w = x - 4\text{,}\) \(~h = 2\text{,}\) \(~V = 2(x - 4)^2\)
  2. \(x\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\)
    \(V\) \(0\) \(2\) \(8\) \(18\) \(32\) \(50\) \(72\)
  3. As \(x\) increases, \(V\) increases.
  4. \(9\) inches by \(9\) inches.
  5. \(2(x - 4)^2 = 50\text{,}\) \(~x = 9\)

49.

Answer.
  1. \(x\) \(0\) \(500\) \(1000\) \(1500\) \(2000\) \(2500\) \(3000\) \(3500\)
    \(I\) \(0\) \(550\) \(1000\) \(1350\) \(1600\) \(1750\) \(1800\) \(1750\)
    \(x\) \(4000\) \(4500\) \(5000\) \(5500\) \(6000\) \(6500\) \(7000\)
    \(I\) \(1600\) \(1350\) \(1000\) \(550\) \(0\) \(-650\) \(-1400\)
  2. \(1600\text{,}\) \(1000\text{,}\) \(-1400\)
  3. parabola
  4. No increase
  5. \(3000\text{;}\) \(1800\)

51.

Answer.
\(\pm 1\)

53.

Answer.
\(\sqrt[3]{-3/4} \text{,}\) \(1\)

55.

Answer.
\(-27 \text{,}\) \(1\)

57.

Answer.
\(\log 2 \text{,}\) \(\log 3\)

59.

Answer.
\(1 \text{,}\) \(2 \)

61.

Answer.
\(\dfrac{-1}{6} \text{,}\) \(1 \)

63.

Answer.
  1. \(\displaystyle A=\dfrac{1}{2}(x^2-y^2) \)
  2. \(\displaystyle A=\dfrac{1}{2}(x-y)(x+y)\)
  3. \(18\) sq ft

6.2 Solving Quadratic Equations
Homework 6.2

1.

Answer.
  1. \(\displaystyle (x+4)^2 \)
  2. \(\displaystyle \left(x-\dfrac{7}{2} \right)^2 \)
  3. \(\displaystyle \left(x+\dfrac{3}{4} \right)^2 \)
  4. \(\displaystyle \left(x-\dfrac{2}{5} \right)^2 \)

3.

Answer.
\(1\)

5.

Answer.
\(-4\text{,}\) \(~-5\)

7.

Answer.
\(\dfrac{3}{2} \pm \sqrt{\dfrac{21}{4}} = \dfrac{-3\pm\sqrt{21}}{2} \)

9.

Answer.
\(-1\pm \sqrt{\dfrac{5}{2}} \)

11.

Answer.
\(\dfrac{-4}{3} \text{,}\) \(~1\)

13.

Answer.
\(\dfrac{1}{4} \pm \sqrt{\dfrac{13}{16}} = \dfrac{1\pm\sqrt{13}}{4} \)

15.

Answer.
\(-1 \text{,}\) \(\dfrac{4}{3} \)

17.

Answer.
\(-2 \text{,}\) \(\dfrac{2}{5} \)

19.

Answer.
\(-1\pm\sqrt{1-c} \)

21.

Answer.
\(-\dfrac{b}{2} \pm \sqrt{\dfrac{b^2-4}{4}} = \dfrac{-b\pm\sqrt{b^2-4}}{2} \)

23.

Answer.
\(\dfrac{-1\pm\sqrt{4a+1}}{a} \)

25.

Answer.
  1. \(\displaystyle A=(x+y)^2 \)
  2. \(\displaystyle A=x^2+2xy+y^2\)
  3. \(x^2\text{,}\) \(xy\text{,}\) \(xy\text{,}\) \(y^2\)
    square

27.

Answer.
\(1.618\text{,}\) \(~-0.618\)

29.

Answer.
\(1.449\text{,}\) \(~-3.449\)

31.

Answer.
\(1.695\text{,}\) \(~-0.295\)

33.

Answer.
\(1.434\text{,}\) \(~0.232\)

35.

Answer.
\(-5.894\text{,}\) \(~39.740\)

37.

Answer.
  1. \(s\) \(10\) \(20\) \(30\) \(40\) \(50\) \(60\) \(70\) \(80\) \(90\) \(100\)
    \(d\) \(9\) \(27\) \(53\) \(87\) \(129\) \(180\) \(239\) \(307\) \(383\) \(467\)
  2. parabola
  3. \(\dfrac{s^2}{24}+\dfrac{s}{2}=50\text{;}\) \(~29.16\) mph

39.

Answer.
  1. \(t\) \(0\) \(5\) \(10\) \(15\) \(20\) \(25\)
    \(h\) \(11,000\) \(10,520\) \(9240\) \(7160\) \(4280\) \(600\)
  2. parabola
  3. \(-16t^2 - 16t + 11,000 = 1000\text{;}\) \(24.5\) sec
  4. \(1.2\) sec

41.

Answer.
  1. \(\displaystyle 2l + 4w = 100\)
  2. \(\displaystyle l = 50 - 2w\)
  3. \(w(50 - 2w) = 250\text{;}\) \(~w = 6.91\text{,}\) \(~18.09\)
  4. \(12.06\) m by \(6.91\) m, or \(4.61\) m by \(18.09\) m

43.

Answer.
  1. \(47.2\) mi
  2. \(1.26\) mi

45.

Answer.
\(w= \dfrac{-4l\pm \sqrt{16l^2+8A}}{4} = \dfrac{-2l\pm \sqrt{4l^2+2A}}{2} \)

47.

Answer.
\(t = \dfrac{4 \pm \sqrt{16+64h}}{32} = \dfrac{1 \pm \sqrt{1+4h}}{8} \)

49.

Answer.
\(t=\dfrac{v \pm \sqrt{v^2-2as}}{a} \)

51.

Answer.
\(y=\dfrac{-x \pm \sqrt{8-11x^2}}{2} \)

53.

Answer.
\(0, ~x^2\)

55.

Answer.
\(\dfrac{-3x\pm 3}{2} \)

57.

Answer.
\(\dfrac{\pm \sqrt{4x^2-36}}{3}=\dfrac{\pm 2 \sqrt{x^2-9}}{3}\)

59.

Answer.
\(\dfrac{\pm 2x}{5} \)

61.

Answer.
\(3\pm\sqrt{\dfrac{V}{\pi h}} \)

63.

Answer.
\(\pm\sqrt{\dfrac{2(E-mgh)}{m}} \)

65.

Answer.
\(\pm\sqrt{\dfrac{V}{2w}-s^2} \)

67.

Answer.
\(\dfrac{-b}{a} \)

69.

Answer.
\(\dfrac{-b\pm \sqrt{b^2-4c}}{2} \)

6.3 Graphing Parabolas
Homework 6.3

1.

Answer.
  1. The parabola opens up, twice as steep as the standard parabola.
    parabola
  2. The parabola is the standard parabola shifted 2 units up.
    parabola
  3. The parabola is the standard parabola shifted 2 units left.
    parabola
  4. The parabola is the standard parabola shifted 2 units down.
    parabola

3.

Answer.
  1. Vertex \((0, -16)\text{;}\) \(x\)-intercepts \((\pm 4, 0)\)
    parabola
  2. Vertex \((0, 16)\text{;}\) \(x\)-intercepts \((\pm 4, 0)\)
    parabola
  3. Vertex \((8, 64)\text{;}\) \(x\)-intercepts \((0, 0)\) and \((16,0) \)
    parabola
  4. Vertex \((8, -64)\text{;}\) \(x\)-intercepts \((0, 0)\) and \((16,0) \)
    parabola

5.

Answer.
  1. Vertex \((1, -3)\text{;}\) \(x\)-intercepts \((0, 0)\) and \((-2,0) \)
    parabola
  2. Vertex \((1, -3)\text{;}\) \(x\)-intercepts \((0, 0)\) and \((2,0) \)
    parabola
  3. Vertex \((0,6)\text{;}\) no \(x\)-intercepts
    parabola
  4. Vertex \((0,-6)\text{;}\) \(x\)-intercepts \((\pm\sqrt{2}, 0)\)
    parabola

7.

Answer.
  1. II
  2. IV
  3. I
  4. III
  5. VI
  6. V

9.

Answer.
  1. \((2000, 400)\text{;}\) The largest annual increase in biomass, \(400\) tons, occurs when the biomass is \(2000\) tons.
  2. parabola
  3. \(4000 \lt x \le 5000\text{;}\) When there are too many fish, there will not be enough food to support all of them.

11.

Answer.
  1. \(x\) \(~~1~~\) \(~~2~~\) \(~~3~~\) \(~~4~~\) \(~~5~~\)
    \(y\) \(1.6\) \(1.2\) \(0.8\) \(0.4\) \(0\)
    \(A\) \(1.6\) \(2.4\) \(2.4\) \(1.6\) \(0\)
  2. \(A = x(2 - 0.4x)\) or \(A = 2x - 0.4x^2\)
  3. parabola
  4. The maximum number of young marmots, on average, is \(2.5\text{;}\) the optimal number of female marmots is \(2.5\text{.}\)

13.

Answer.
  1. parabola
    Vertex: \((-6, -1.5)\text{;}\) Horizontal intercepts \((-12, 0)\) and \((0, 0)\text{.}\) The point \((0, 0)\) means that no distance is required to stop a plane that is not moving.
  2. \(594\) ft/sec

15.

Answer.
  1. \(\left(\dfrac{3}{2},\dfrac{17}{4} \right) \text{,}\) maximum
  2. \(\left(\dfrac{2}{3},\dfrac{1}{9} \right) \text{,}\) minimum
  3. \((-4.5,18.5) \text{,}\) maximum

17.

Answer.
  1. \(x\)-intercepts: \(\left(\frac{-1}{2} , 0\right)\) and \((4, 0)\text{;}\) \(y\)-intercept: \((0, 4)\text{;}\) vertex: \(\left(\frac{7}{4},\frac{81}{8} \right)\)
  2. parabola

19.

Answer.
  1. \(x\)-intercepts: \((-2, 0)\) and \((1, 0)\text{;}\) \(y\)-intercept: \((0, -1.2)\text{;}\) vertex: \((-0.5, -1.35)\)
  2. parabola

21.

Answer.
  1. No \(x\)-intercepts; \(y\)-intercept: \((0, 7)\text{;}\) vertex: \((-2, 3)\)
  2. parabola

23.

Answer.
  1. \(x\)-intercepts: \(\left(-1\pm\sqrt{2},0 \right) \text{;}\) \(y\)-intercept: \((0, -1)\text{;}\) vertex: \((-1, -2)\)
  2. parabola

25.

Answer.
  1. \(x\)-intercepts: \(\left(\dfrac{3\pm\sqrt{3}}{2},0 \right) \text{;}\) \(y\)-intercept: \((0, -3)\text{;}\) vertex: \(\left(\dfrac{3}{2},\dfrac{3}{2} \right) \)
  2. parabola

27.

Answer.
  1. three parabolas
    \(f(x) = x^2 - 6x + 5\text{:}\) \(x\)-intercepts \((1, 0)\) and \((5, 0)\text{;}\) \(g(x) = x^2 - 6x + 9\text{:}\) \(x\)-intercept \((3, 0)\text{;}\) \(h(x) = x^2 - 6x + 12\text{:}\) No \(x\)-intercept.
  2. \(16, 0, -12\text{:}\) \(D = 16\) means that there are two rational \(x\)-intercepts, \(D = 0\) means that there is exactly one \(x\)-intercept, \(D=-12\) means that there is no \(x\)-intercept.

29.

Answer.
Two complex solutions

31.

Answer.
One repeated rational solution

33.

Answer.
Two distinct real solutions

35.

Answer.
No

37.

Answer.
Yes

39.

Answer.
  1. \(\displaystyle 2-\sqrt{5} \)
  2. \(\displaystyle x^2-4x-1=0\)

41.

Answer.
  1. \(\displaystyle 4+3\sqrt{2} \)
  2. \(\displaystyle x^2-8x-2=0\)

43.

Answer.
  1. IV
  2. V
  3. I
  4. VII

45.

Answer.
  1. \(y=x^2+x-6\text{;}\) \(~x=\dfrac{-1}{2} \)
  2. \(y=2x^2+2x-12\text{;}\) \(~x=\dfrac{-1}{2} \)

47.

Answer.
  1. four parabolas
  2. four points
    \(\displaystyle (-1, -1), (-2, -4), (-3, -9), (-4, -16)\)
  3. \(\displaystyle y=-x^2\)
  4. The vertex of \(y = x^2 + 2kx\) is \((-k, -k^2)\)

49.

Answer.
  1. \(t\) \(0\) \(0.5\) \(1.0\) \(1.5\) \(2.0\) \(2.5\) \(3.0\) \(3.5\)
    \(x\) \(0\) \(6.075\) \(11.5\) \(16.275\) \(20.4\) \(23.875\) \(26.7\) \(28.875\)
    \(y\) \(0\) \(7.44\) \(12.48\) \(15.12\) \(15.36\) \(13.2\) \(8.64\) \(1.68\)
  2. soccer ball path
  3. \(y\approx 15.4\) m
  4. \(x\approx 30\) m
  5. \(3.6\) sec
  6. \(x\approx 29.2\) m
  7. \(y\approx 15.55\) m

6.4 Problem Solving
Homework 6.4

1.

Answer.
  1. No. of price
    increases
    Price of
    room
    No. of rooms
    rented
    Total
    revenue
    \(0\) \(20\) \(60\) \(1200\)
    \(1\) \(22\) \(57\) \(1254\)
    \(2\) \(24\) \(54\) \(1296\)
    \(3\) \(26\) \(51\) \(1326\)
    \(4\) \(28\) \(48\) \(1344\)
    \(5\) \(30\) \(45\) \(1350\)
    \(6\) \(32\) \(42\) \(1344\)
    \(7\) \(34\) \(39\) \(1326\)
    \(8\) \(36\) \(36\) \(1296\)
    \(10\) \(40\) \(30\) \(1200\)
    \(12\) \(44\) \(24\) \(1056\)
    \(16\) \(52\) \(12\) \(624\)
    \(20\) \(60\) \(0\) \(0\)
  2. Price of a room: \(20 + 2x\text{;}\) Rooms rented: \(60 - 3x\text{;}\) Revenue: \(1200 + 60x - 6x^2\)
  3. \(\displaystyle 20\)
  4. parabola
  5. $\(24;~\) $\(36\)
  6. $\(1350;~\) $\(30;\) \(~45~\)rooms

3.

Answer.
  1. (For example) \(10\) m by \(20\) m with area \(200\) sq m; or \(15\) m by \(15\) m, area \(225\) sq m
  2. \(\displaystyle 30-x\)
  3. \(\displaystyle 30x-x^2\)

5.

Answer.
\(3\) sec, \(144\) ft

7.

Answer.
\(100\) baskets, \(\$2000\)

9.

Answer.
  1. Length: \(50 - w\text{;}\) Area: \(50w - w^2\)
  2. \(625\) sq in

11.

Answer.
  1. \(\displaystyle 300w - 2w^2\)
  2. \(11,250\) sq yd

13.

Answer.
  1. Number of people: \(16 + x\text{;}\) Price per person: \(2400 - 100x\text{;}\) Total revenue: \(38,400 + 800x - 100x^2\)
  2. \(\displaystyle 20\)

15.

Answer.
\(a = 0.9\text{;}\) \(I = \$865.80\)

17.

Answer.
three parabolas

19.

Answer.
three parabolas

21.

Answer.
  1. \(\displaystyle (3,4)\)
  2. parabola
  3. \(\displaystyle y = 2x^2 - 12x + 22\)

23.

Answer.
  1. \(\displaystyle (-4,-3)\)
  2. parabola
  3. \(\displaystyle y = \dfrac{-1}{2} x^2 - 4x -11\)

25.

Answer.
  1. \(\displaystyle y = (x - 2)^2 + 3\)
  2. parabola

27.

Answer.
  1. \(\displaystyle y = 3(x + 1)^2 - 5\)
  2. parabola

29.

Answer.
  1. \(\displaystyle y=-2(x + 2)^2 + 11\)
  2. parabola

31.

Answer.
No solutions:
two non-intersecting parabolas
One solution:
two tangent parabolas
Two solutions:
two parabolas intersecting in two points

33.

Answer.
\((-1, 12), (4, 7)\)

35.

Answer.
\((-2, 7) \)

37.

Answer.
No solution

39.

Answer.
\((-2, -5), (5, 16)\)

41.

Answer.
\((1, 4)\)

43.

Answer.
\((3,1)\)

45.

Answer.
  1. parabola and horizontal line
  2. Larger, by \(75\) tons. Smaller, by \(125\) tons.
  3. \(1000\) tons and \(3000\) tons
  4. The fish population will decrease each year until it is completely depleted.

47.

Answer.
  1. parabola and line of positive slope
  2. \(K\gt N\text{.}\) The population will decrease by \(48\) bears.
  3. The population will increase by \(18\) bears.
  4. \(\displaystyle 1000\)
  5. Populations between \(0\) and \(1000\) will increase; populations over \(1000\) will decrease.
  6. \(1000\) (unless the population is \(0\))
  7. \(500\) (unless the population is \(0\))

49.

Answer.
  1. \(\displaystyle (200,~ 2600), (1400,~ 18,200)\)
  2. parabola and line
  3. \(\displaystyle x=800\)

51.

Answer.
  1. \(\displaystyle (60,~ 39,000), (340,~ 221,000)\)
  2. parabola and line
  3. \(\displaystyle x=200\)

53.

Answer.
  1. parabola and axis of symmetry
  2. See graph and (c)
  3. \(\displaystyle ad^2+k\)
  4. The two points on the parabola that are the same horizontal distance from the line \(x = h\) the axis of symmetry have the same \(y\)-coordinate, so they are symmetric about that line.

6.5 Quadratic Inequalities
Homework 6.5

1.

Answer.
  1. parabola for quadratic inequality
  2. See graph
  3. \(x\gt 3\) or \(x\lt -3\text{.}\) It omits the solutions \(x \lt -3\text{.}\)

3.

Answer.
  1. parabola for quadratic inequality
  2. See graph
  3. \(x\gt 3\) or \(x\lt -1\)

5.

Answer.
  1. \(\displaystyle -12, 15\)
  2. \(x\lt -12\) or \(x\gt 15\)

7.

Answer.
  1. \(\displaystyle 0.3, 0.5\)
  2. \(\displaystyle 0.3 \le x \le 0.5\)

9.

Answer.
  1. \(\displaystyle (-\infty, -3) \cup (6, \infty)\)
  2. \(\displaystyle (-3,6) \)
  3. \(\displaystyle [-2,5] \)
  4. \(\displaystyle (-\infty, -2] \cup [5, \infty)\)

11.

Answer.
  1. \(\displaystyle (-4,4) \)
  2. \(\displaystyle (-\infty, -4) \cup (4, \infty)\)
  3. \(\displaystyle (-\infty, -3] \cup [3, \infty)\)
  4. \(\displaystyle [-3,3] \)

13.

Answer.
\((-\infty, -2) \cup (3, \infty)\)

15.

Answer.
\([0, 4] \)

17.

Answer.
\((\infty, -1)\cup (6, \infty) \)

19.

Answer.
\((-4.8, 6.2)\)

21.

Answer.
\((-\infty, -7.2] \cup [0.6, \infty) \)

23.

Answer.
\((-\infty, 5.2) \cup (8.8, \infty) \)

25.

Answer.
\(x \lt - 3.5\) or \(x \gt 3.5\)

27.

Answer.
All \(x\)

29.

Answer.
\(-10.6\lt x\lt 145.6\)

31.

Answer.
\((-3, 4)\)

33.

Answer.
\([-7, 4]\)

35.

Answer.
\(\left(-\infty, \dfrac{-1}{2}\right)\cup (4, \infty)\)

37.

Answer.
\((-8, 8)\)

39.

Answer.
\((-2.24, 2.24)\)

41.

Answer.
\((-\infty, 0.4] \cup [6, \infty)\)

43.

Answer.
\((-\infty, -0.67) \cup (0.5, \infty)\)

45.

Answer.
\((-\infty, 0.27] \cup [3.73, \infty)\)

47.

Answer.
All \(m\)

49.

Answer.
No solution

51.

Answer.
  1. \(320t - 16t^2 \gt 1024\text{;}\) \(4 \lt t \lt 16\text{:}\) Between \(4\) and \(16\) seconds
  2. parabola for inequality

53.

Answer.
  1. \(-0.02x^2 + 14x + 1600 \lt 2800\text{;}\) \([0, 100) \cup (600, 700]\text{:}\) Either less than \(100\) or more than \(600\) shears.
  2. parabola for inequality

55.

Answer.
  1. \(p(1200 - 30p)\gt 9000\text{;}\) \(10\lt p \lt 30\text{:}\) Between $\(10\) and $\(30\)
  2. parabola for inequality

57.

Answer.
  1. \(500\pi \lt 20\pi r^2 \lt 2880\pi\text{;}\) \(5 \lt r \lt 12\text{;}\) The radius must be between \(5\) and \(12\) ft.
  2. parabola for inequality

59.

Answer.
  1. Size of group: \(20 + x\text{;}\) Price per person: \(600 - 10x\)
  2. \(\displaystyle I = (20 + x)(600 - 10x)\)
  3. $\(16,000\text{;}\) \(~20\)
  4. Between 5 and 35
  5. parabola for inequality

6.6 Curve Fitting
Homework 6.6

1.

Answer.
\(a = -2, b = 3, c = -4\)

3.

Answer.
\(a = 1, b = -4, c = 7\)

5.

Answer.
\(a = 3, b = 1, c = -2\text{.}\) The equation for the parabola is \(y = 3x^2 + x - 2\)

7.

Answer.
  1. \(\displaystyle P = -0.16x^2 + 7.4x - 71\)
  2. \(14\%\text{.}\) It predicts that \(14\%\) of the \(25\)-year old population use marijuana on a regular basis.
  3. parabola fitting points

9.

Answer.
  1. \(\displaystyle C = 0.75t^2 -1.85t + 56.2\)
  2. \(65.7\) lb
  3. parabola fit to data

11.

Answer.
\(D=\dfrac{1}{2}n^2-\dfrac{3}{2}n \)

13.

Answer.
  1. \(\displaystyle y= a(x + 2)^2 + 6\)
  2. \(\displaystyle 3\)

15.

Answer.
  1. \(\displaystyle y= \dfrac{3}{4}x^2-3 \)
  2. \(y=ax^2-3 \) for any \(a\lt 0\)

17.

Answer.
\(y = -2(x - 30)^2 + 280 \)

19.

Answer.
\(y=x^2 - 9\)

21.

Answer.
\(y=-2x^2 \)

23.

Answer.
\(y = x^2 - 2x - 15 \)

25.

Answer.
\(y = x^2 - 4x +5 \)

27.

Answer.
  1. \(\displaystyle y=\dfrac{-1}{40}(x-80)^2+164 \)
  2. \(160.99\) ft

29.

Answer.
  1. Vertex: \(\left( \frac{1991}{2} , 79\right)\text{;}\) \(y\)-intercept: \((0, 297)\)
  2. \(\displaystyle y = 0.00022(x - 995.5)^2 + 79\)

31.

Answer.
  1. \(8\) m
  2. \(\displaystyle y=\dfrac{x^2}{32} \)
  3. \(3.125\) m

33.

Answer.
  1. \(\displaystyle h = 8.24t + 38.89\)
  2. \(162.5\) m
  3. line fit to data
  4. \(\displaystyle h=-0.81t^2 + 21.2t\)
  5. \(135.7\) m
  6. parabola fit to data
  7. Quadratic: Gravity will slow the projectile, giving the graph a concave down shape.

35.

Answer.
  1. \(\displaystyle y=-0.587t^2 + 7.329t - 2.538\)
  2. The predicted peak was in 2000, near the end of March. The model predicts \(7\) deaths for 2005.

37.

Answer.
  1. \(\displaystyle y = 0.0051t + 11.325\)
  2. \(13.2\) hr
  3. line to data
  4. \(\displaystyle y=-0.00016t^2 + 0.053t + 9.319\)
  5. \(7.4\) hr
  6. parabola to data
  7. \(9.8\) hr (the same as the previous year); Neither model is appropriate.

6.7 Chapter Summary and Review
Chapter 6 Review Problems

1.

Answer.
\(0, ~\dfrac{-5}{2} \)

3.

Answer.
\(-1, ~2\)

5.

Answer.
\(-2, ~3\)

7.

Answer.
\(4x^2 - 29x - 24 = 0\)

9.

Answer.
\(y= (x - 3) (x + 2.4)\)

11.

Answer.
\(1\text{,}\) \(~2\)

13.

Answer.
\(-1\text{,}\) \(~\dfrac{1}{4} \)

15.

Answer.
\(2\pm \sqrt{10} \)

17.

Answer.
\(\dfrac{3\pm\sqrt{3} }{2} \)

19.

Answer.
\(1\text{,}\) \(~2\)

21.

Answer.
\(2\pm \sqrt{2} \)

23.

Answer.
\(\pm\sqrt{\dfrac{2K}{m}} \)

25.

Answer.
\(\dfrac{3\pm\sqrt{9-3h} }{3} \)

27.

Answer.
\(9\)

29.

Answer.
\(10\) ft by \(18\) ft or \(12\) ft by \(15\) ft

31.

Answer.
\(1\) sec

33.

Answer.
  1. \(\displaystyle h = 100t - 2.8t^2\)
  2. parabola
  3. \(893\) ft
  4. \(15\frac{5}{7}\) sec on the way up and \(20\) sec on the way down

35.

Answer.
\(A_1\) is the area of a square minus the area of two triangles:
\begin{equation*} x^2-2\left(\dfrac{1}{2}y\cdot y \right)=x^2-y^2 \end{equation*}

37.

Answer.
  1. Vertex and intercepts are all \((0,0) \text{.}\)
  2. parabola

39.

Answer.
  1. Vertex \((\dfrac{9}{2},\dfrac{-81}{4})\text{;}\) \(x\)-intercepts \((9,0)\) and \((0,0)\text{;}\) \(y\)-intercept \((0,0) \)
  2. parabola

41.

Answer.
  1. Vertex \((\dfrac{-1}{2},\dfrac{-25}{4})\text{;}\) \(x\)-intercepts \((-3,0)\) and \((2,0)\text{;}\) \(y\)-intercept \((0,-6) \)
  2. parabola

43.

Answer.
  1. Vertex \((\dfrac{-1}{4},\dfrac{65}{8})\text{;}\) \(x\)-intercepts \(\left(\dfrac{-1 \pm \sqrt{65}}{4} ,0 \right)\text{;}\) \(y\)-intercept \((0,8) \)
  2. parabola

45.

Answer.
  1. Vertex \((\dfrac{1}{2},\dfrac{-37}{4})\text{;}\) \(x\)-intercepts \(\left(\dfrac{1 \pm \sqrt{37}}{2} ,0 \right)\text{;}\) \(y\)-intercept \((0,-9) \)
  2. parabola

47.

Answer.
Two

49.

Answer.
One rational solution

51.

Answer.
No real solutions

53.

Answer.
  1. \(45\text{;}\) $\(410\)
  2. parabola

55.

Answer.
  1. \(\displaystyle y = 60 (4 + x) (32 - 4x)\)
  2. \(\displaystyle 2\)

57.

Answer.
  1. \(\displaystyle 0, ~\dfrac{-3}{2} \)
  2. \(\displaystyle \dfrac{5}{6} \)
  3. \(\displaystyle -5, ~\dfrac{1}{2} \)
  4. parabola and line

59.

Answer.
  1. \(\displaystyle 0, ~1 \)
  2. None
  3. \(\displaystyle -1, ~3 \)
  4. two parabolas

61.

Answer.
\((-\infty ,-2) \cup (3,\infty )\)
quadratic inequality

63.

Answer.
\(\left[-1,\dfrac{3}{2} \right] \)
quadratic inequality

65.

Answer.
\([-2,2] \)
quadratic inequality

67.

Answer.
  1. \(\displaystyle R=p \left(220-\dfrac{1}{4}p \right) \)
  2. Between $\(4.00\) and $\(4.80\)

69.

Answer.
\((1, 3)\text{,}\) \(~(-1, 3)\)
parabola and horizontal line

71.

Answer.
\((-1, -4)\text{,}\) \(~(5, 20)\)
parabola and line

73.

Answer.
\((-9, 155)\text{,}\) \(~(5, 15)\)
two parabolas

75.

Answer.
\((-1, 2)\text{,}\) \(~(3, 0)\)
two parabolas

77.

Answer.
\(a=1\text{,}\) \(~b=-1\text{,}\) \(~c=-6\)

79.

Answer.
\(p(x)=\dfrac{-1}{2}x^2-4x+10 \)

81.

Answer.
\(y = 0.2 (x - 15)^2 -6\)

83.

Answer.
  1. \(\displaystyle f (x) = (x - 12)^2 -100\)
  2. parabola

85.

Answer.
  1. \(\displaystyle y =\dfrac{1}{3} (x +3)^2 -2\)
  2. parabola

87.

Answer.
  1. \(\displaystyle h = 36.98t + 5.17\)
  2. \(116.1\) m, \(~153.1\) m
  3. scatterplot and regression line
  4. \(\displaystyle h= -4.858t^2 + 47.67t + 0.89\)
  5. \(100.2\) m, \(~113.9\) m
  6. scatterplot and regression parabola
  7. Quadratic: Gravity will slow the cannonball, giving the graph a concave down shape.

7 Polynomial and Rational Functions
7.1 Polynomial Functions
Homework 7.1

1.

Answer.
\(12x^3 - 5x^2 - 8x + 4\)

3.

Answer.
\(x^3 - 6x^2 + 11x - 6\)

5.

Answer.
\(6a^4 - 5a^3 - 5a^2 + 5a - 1\)

7.

Answer.
\(y^4 + 5y^3 - 20y - 16\)

9.

Answer.
\(6 + x + 5x^2\)

11.

Answer.
\(4 - 7x^2 - 8x^4\)

13.

Answer.
\(0x^2\)

15.

Answer.
\(-8x^3\)

17.

Answer.
  1. \(\displaystyle 4\)
  2. \(\displaystyle 5\)
  3. \(\displaystyle 7\)

19.

Answer.
\(\begin{aligned}[t] (x + y)^3 \amp = (x + y)(x + y)^2\\ \amp = (x + y)(x^2 + 2xy + y^2) \\ \amp = x^3 + 2x^2 y + xy^2 + x^2 y + 2xy^2 + y^3\\ \amp = x^3 + 3x^2 y + 3xy^2 + y^3 \end{aligned}\)

21.

Answer.
\(\begin{aligned}[t] (x + y)(x^2 - xy + y^2) \amp = x^3 -x^2 y + xy^2 + x^2 y -xy^2 + y^3\\ \amp = x^3 + y^3 \end{aligned}\)

23.

Answer.
  1. The formula begins with \(x^3\) and ends with \(y^3\text{.}\) As you proceed from term to term, the exponents on \(x\) decrease while the exponents on \(y\) increase, and on each term the sum of the exponents is \(3\text{.}\) The coefficients of the two middle terms are both \(3\text{.}\)
  2. The formula is the same as for \((x - y)^3\text{,}\) except that the terms alternate in sign.

25.

Answer.
\(1+6z+12z^2+8z^3\)

27.

Answer.
\(1-15\sqrt{t}+75t-125t\sqrt{t} \)

29.

Answer.
\(x^3-1\)

31.

Answer.
\(8x^3+1\)

33.

Answer.
\(27a^3 - 8b^3\)

35.

Answer.
\((x+3)(x^2-3x+9) \)

37.

Answer.
\((a-2b)(a^2+2ab+4b^2) \)

39.

Answer.
\((xy^2-1)(x^2y^4+xy^2+1) \)

41.

Answer.
\((3a+4b)(9a^2 -12ab+16b^2) \)

43.

Answer.
\((5ab-1)(25a^2b^2+5ab+1) \)

45.

Answer.
\((4t^3+w^2)(16t^6 -4t^3w^2+w^4) \)

47.

Answer.
  1. \(\displaystyle \left(6-\dfrac{5}{4}\pi \right)x^2 \)
  2. \(\approx 132.67\) square inches

49.

Answer.
  1. \(\displaystyle \dfrac{2}{3}\pi r^3+\pi r^2h \)
  2. \(\displaystyle V(r)=\dfrac{14}{3}\pi r^3 \)

51.

Answer.
  1. \(500(1 + r )^2\text{;}\) \(500(1 + r )^3\text{;}\) \(500(1 + r )^4 \)
  2. \(500r^2 + 1000r + 500\text{;}\) \(500r^3 + 1500r^2 + 1500r + 500\text{;}\) \(500r^4 + 2000r^3 + 3000r^2 + 2000r + 500 \)
  3. $583.20, $629.86, $680.24

53.

Answer.
  1. Length: \(16 - 2x\text{;}\) Width: \(12 - 2x\text{;}\) Height: \(x\)
  2. \(\displaystyle V = x(16 - 2x)(12 - 2x)\)
  3. Real numbers between \(0\) and \(6\)
  4. \(x\) \(1\) \(2\) \(3\) \(4\) \(5\)
    \(V\) \(140\) \(192\) \(180\) \(128\) \(60\)
  5. cubic
  6. \(2.26\) in, \(194.07\) cu in

55.

Answer.
  1. \(\displaystyle 0, 9\)
  2. \(0\le x \le 9\text{;}\) \(R\ge 0\) for these values
  3. cubic
  4. \(\dfrac{28}{3} \) points
  5. \(36\) points
  6. \(3\) ml or \(8.2\) ml

57.

Answer.
  1. cubic
  2. \(900\text{;}\) \(11,145\text{;}\) \(15,078\)
  3. \(1341\text{;}\) \(171\text{;}\) \(627\)
  4. Between 1990 and 1991

59.

Answer.
  1. cubic
  2. The graph is concave down until about \(x = 12.5\) and is concave up afterwards. The cost is growing at the slowest rate at the inflection point at about \(x = 12.5\text{,}\) or \(1250\) students.
  3. About \(2890\)

61.

Answer.
  1. \(20\) cm
  2. \(100\) cm

63.

Answer.
  1. \(\displaystyle 763.10 \lt H(t) \lt 864\)
  2. quartic
  3. \(864\) min
  4. \(859.8\) min
  5. Within \(34\) days of the summer solstice
  6. More than \(66\) days from the summer solstice

7.2 Graphing Polynomial Functions
Homework 7.2

1.

Answer.
cubic
  1. The end behavior is the same as for the basic cubic because the lead coefficient is positive.
  2. There is one \(x\)-intercept, no turning points, one inflection point.

3.

Answer.
cubic
  1. The end behavior is the opposite to the basic cubic (the graph starts in the upper left and extends to the lower right) because the lead coefficient is negative.
  2. There is one \(x\)-intercept, no turning points, one inflection point.

5.

Answer.
cubic
  1. The end behavior is the same as for the basic cubic because the lead coefficient is positive.
  2. There are three \(x\)-intercepts, two turning points, one inflection point.

7.

Answer.
cubic
  1. The end behavior is the same as for the basic cubic because the lead coefficient is positive.
  2. There are three \(x\)-intercepts, two turning points, one inflection point.

9.

Answer.
  1. cubic
  2. cubic
  3. cubic
(b) and (c) are the same.

11.

Answer.
quartic
  1. The end behavior is the same as for the basic quartic because the lead coefficient is positive.
  2. There are two \(x\)-intercepts, one turning point, no inflection point.

13.

Answer.
quartic
  1. The end behavior is the opposite of the basic quartic (the graph starts in the lower left and ends in the lower right) because the lead coefficient is negative.
  2. There are no \(x\)-intercepts, three turning points, two inflection points.

15.

Answer.
quartic
  1. The end behavior is the same as for the basic quartic because the lead coefficient is positive.
  2. There are two \(x\)-intercepts, one turning point, two inflection points.

17.

Answer.
quartic
  1. The end behavior is the opposite of the basic quartic (the graph starts in the lower left and ends in the lower right) because the lead coefficient is negative.
  2. There are no \(x\)-intercepts, one turning point, two inflection points.

19.

Answer.
The graph of a cubic polynomial with a positive lead coefficient will have the same end behavior as the basic cubic, and a cubic with a negative lead coefficient will have the opposite end behavior. Each graph of a cubic polynomial has one, two, or three \(x\)-intercepts, it has two, one or no turning point, and it has exactly one inflection point.

21.

Answer.
  1. cubic
    \(\displaystyle (-2, 0), (-1, 0), (3, 0)\)
  2. \(\displaystyle P(x) = (x + 2)(x + 1)(x - 3)\)
  3. Yes

23.

Answer.
  1. quartic
    \(\displaystyle (-2, 0), (0, 0), (1, 0), (2, 0)\)
  2. \(\displaystyle R(x) = (x + 2)(x)(x - 1)(x - 2)\)
  3. Yes

25.

Answer.
  1. cubic
    \(\displaystyle (-2, 0), (1, 0), (4, 0)\)
  2. \(\displaystyle p(x) = (x + 2)(x - 1)(x - 4)\)
  3. Yes

27.

Answer.
  1. quartic
    \(\displaystyle (-2, 0), (2, 0), (3, 0)\)
  2. \(\displaystyle r(x) = (x + 2)^2(x - 2)(x - 3)\)
  3. Yes

29.

Answer.
cubic

31.

Answer.
quartic

33.

Answer.
quintic

35.

Answer.
degree six

37.

Answer.
  1. \(0\) (multiplicity 2)
  2. quartic

39.

Answer.
  1. \(0\) (multiplicity 2), \(2\) (multiplicity 2)
  2. quartic

41.

Answer.
  1. \(\displaystyle 0, \pm 2\)
  2. cubic

43.

Answer.
  1. \(\displaystyle \pm\sqrt{2}, \pm\sqrt{8}\)
  2. quartic

45.

Answer.
  1. \(\pm 1, -3\) (multiplicity 2)
  2. quartic

47.

Answer.
\(P(x) = (x + 2)(x - 1)(x - 4)\)

49.

Answer.
\(P(x) = (x + 3)^2(x - 2)\)

51.

Answer.
\(P(x) = (x - 2)^3(x + 2)\)

53.

Answer.
  1. \(y = x^3 - 4x + 3\text{;}\) The graph of \(y = f (x)\) shifted \(3\) units up.
    cubics
  2. \(y = x^3 - 4x -5\text{;}\) The graph of \(y = f (x)\) shifted \(5\) units down.
    cubics
  3. \(y = (x - 2)^3 - 4(x - 2)\text{;}\) The graph of \(y = f (x)\) shifted \(2\) units right.
    cubics
  4. \(y = (x +3)^3 - 4(x +3)\text{;}\) The graph of \(y = f (x)\) shifted \(3\) units left.
    cubics

55.

Answer.
  1. \(y = x^4 - 4x^2 + 6\text{;}\) The graph of \(y = f (x)\) shifted \(6\) units up.
    quartics
  2. \(y = x^4 - 4x^2 - 2\text{;}\) The graph of \(y = f (x)\) shifted \(2\) units down.
    quartics
  3. \(y = (x - 1)^4 - 4(x - 1)^2\text{;}\) The graph of \(y = f (x)\) shifted \(1\) unit right.
    quartics
  4. \(y = (x +2)^4 - 4(x +2)^2\text{;}\) The graph of \(y = f (x)\) shifted \(2\) units left.
    quartics

57.

Answer.
\(q(x) = 2x^2 + 4x - 7\text{;}\) \(r (x) = -32\)

59.

Answer.
\(q(x) = x^3 - 6x\text{;}\) \(r (x) =-6x + 5\)

61.

Answer.
  1. If \(P(x)\) is a nonconstant polynomial with real coefficients and \(a\) is any real number, then there exist unique polynomials \(q(x)\) and \(r (x)\) such that
    \begin{equation*} P(x) = (x - a)q(x) + r (x) \end{equation*}
    where \(\text{deg }r (x)\lt \text{deg }(x - a)\text{.}\)
  2. Zero
  3. \(P(a) = (a - a)q(a) + r (a) = r (a)\text{.}\) Because \(\text{deg }r(x) = 0 \text{,}\) \(r(x) \) is a constant. That constant value is \(P(a) \text{,}\) so \(P(x) = (x - a)q(x) + P(a)\text{.}\)

63.

Answer.
  1. From the remainder theorem, \(\begin{aligned}[t] P(x) \amp = (x - a)Q(x) + P(a)\\ \amp = (x - a)Q(x) + 0\\ \amp =(x - a)Q(x) \end{aligned}\)
  2. By definition of a factor, if \(x-a\) is a factor of \(P(x) \text{,}\) then \(P(x) = (x - a)q(x)\text{,}\) so \(P(x) =(x - a)q(x) + 0\text{.}\) The uniqueness guaranteed in the remainder theorem tells us that \(P(a) = 0\text{.}\)

65.

Answer.
  1. \(\displaystyle P(1)=0 \)
  2. \(\displaystyle \dfrac{1\pm\sqrt{5}}{2} \)

67.

Answer.
  1. \(\displaystyle P(-3)=0 \)
  2. \(\displaystyle 0, 2, 4 \)

69.

Answer.
  1. About \(-1\lt x \lt 2\)
    cubic on exponential
  2. \(x\) \(-1\) \(-0.5\) \(0\) \(0.5\) \(1\) \(1.5\) \(2\)
    \(f(x) \) \(0.368 \) \(0.607 \) \(1 \) \(1.649 \) \(2.718 \) \(4.482 \) \(7.389 \)
    \(p(x) \) \(0.333\) \(0.604\) \(1\) \(1.646\) \(2.667\) \(4.188\) \(6.333\)
  3. \(\displaystyle 0.122\)
  4. quintic on exponential
    The error is relatively small for values of \(x\) between \(-3\) and \(2.5\text{.}\)

7.3 Complex Numbers
Homework 7.3

1.

Answer.
\(-4+5i\)

3.

Answer.
\(-4+i\)

5.

Answer.
\(\dfrac{-5}{6}- \dfrac{\sqrt{2}}{6} i\)

7.

Answer.
\(-3\pm 2i\)

9.

Answer.
\(\dfrac{1}{6} \pm\dfrac{\sqrt{11}}{6} i\)

11.

Answer.
\(13 + 4i\)

13.

Answer.
\(-0.8 + 3.8i\)

15.

Answer.
\(20 + 10i\)

17.

Answer.
\(-17 + 34i\)

19.

Answer.
\(46 + 14i\sqrt{3}\)

21.

Answer.
\(52 \)

23.

Answer.
\(-2 - 2i \)

25.

Answer.
\(-1 + 4i\)

27.

Answer.
\(7+4i\)

29.

Answer.
\(\dfrac{-25}{29}+\dfrac{10}{29}i \)

31.

Answer.
\(\dfrac{3}{4} - \dfrac{\sqrt{3}}{4}i \)

33.

Answer.
\(\dfrac{-2}{3} + \dfrac{\sqrt{5}}{3}i \)

35.

Answer.
\(i \)

37.

Answer.
  1. \(\displaystyle 0\)
  2. \(\displaystyle 0\)

39.

Answer.
  1. \(\displaystyle 0\)
  2. \(\displaystyle 0\)

41.

Answer.
  1. \(\displaystyle 0\)
  2. \(\displaystyle 0\)

43.

Answer.
\(4z^2 + 49\)

45.

Answer.
\(x^2 + 6x + 10\)

47.

Answer.
\(v^2 - 8v + 17\)

49.

Answer.
\(x\ge 5\text{;}\) \(~x\lt 5\)

51.

Answer.
  1. \(\displaystyle -1\)
  2. \(\displaystyle 1\)
  3. \(\displaystyle -i\)
  4. \(\displaystyle -1\)

53.

Answer.
  1. \(\displaystyle 2-\sqrt{5}\)
  2. \(\displaystyle x^2 - 4x - 1\)

55.

Answer.
  1. \(\displaystyle 4+3i\)
  2. \(\displaystyle x^2 - 8x +25\)

57.

Answer.
  1. \(\displaystyle 4\)
  2. \(\displaystyle 5\)

59.

Answer.
\(x^4 - 6x^3 + 23x^2 - 50x + 50\)

61.

Answer.
\(x^4 - 7x^3 + 20x^2 - 19x + 13\)

63.

Answer.
complex conjugates
The complex conjugates are reflections of each other across the real axis.

65.

Answer.
complex conjugates
The complex conjugates are reflections of each other across the real axis.

67.

Answer.
powers of i

69.

Answer.
complex numbers

71.

Answer.
  1. \(\displaystyle m=\dfrac{b}{a} \)
  2. \(\displaystyle m=\dfrac{a}{-b} \)
  3. \(-1\text{;}\) The angle is \(90\degree\text{.}\)

7.4 Graphing Rational Functions
Homework 7.4

1.

Answer.
  1. \(\displaystyle t=\dfrac{150}{50-v} \)
  2. \(v\) \(0\) \(5\) \(10\) \(15\) \(20\) \(25\) \(30\) \(35\) \(40\) \(45\) \(50\)
    \(t\) \(3\) \(3.33\) \(3.75 \) \(4.29 \) \(5 \) \(6 \) \(7.5 \) \(10 \) \(15 \) \(30 \) —
    The travel time increases as the headwind speed increases.
  3. rational function

3.

Answer.
  1. \(\displaystyle 0\le p \lt 100 \)
  2. \(p\) \(0\) \(15\) \(25\) \(40\) \(50\) \(75\) \(80\) \(90\) \(100\)
    \(C\) \(0\) \(12.7\) \(24 \) \(48 \) \(72 \) \(216 \) \(288 \) \(648 \) —
  3. \(\displaystyle 60\%\)
    rational function
  4. \(\displaystyle p\gt 96\%\)
  5. \(p=100\text{;}\) As the percentage immunized approaches \(100\text{,}\) the cost grows without bound.

5.

Answer.
  1. \(\displaystyle C=8+\dfrac{20,000}{n} \)
  2. \(n\) \(100\) \(200\) \(400\) \(500\) \(1000\) \(2000\) \(4000\) \(5000\) \(8000\)
    \(C\) \(208 \) \(108 \) \(58 \) \(48 \) \(28 \) \(18 \) \(13 \) \(12 \) \(10.5 \)
  3. rational function
  4. \(\displaystyle 2000\)
  5. \(\displaystyle n\gt 5000\)
  6. \(C=8\text{;}\) As \(n\) increases, the average cost per calculator approaches $\(8\text{.}\)

7.

Answer.
  1. \(4500+\dfrac{3000}{x} \text{;}\) \(C(x) = 6x + 4500 + \dfrac{3000}{x} \)
  2. \(x\) \(10\) \(20\) \(30\) \(40\) \(50\) \(60\) \(70\) \(80\) \(90\) \(100\)
    \(C\) \(4860 \) \(4770 \) \(4780 \) \(4815 \) \(4860 \) \(4910 \) \(5018 \) \(5073 \) \(5130 \)
  3. $\(4768.33\)
    rational function
  4. \(22\text{;}\) \(14\)
  5. rational function with slant asymptote
    The graph of \(C\) approaches the line as an asymptote.

9.

Answer.
  1. The surface area is \(2x^2 + 4xh = 96\text{.}\) Solving for \(h\text{,}\) \(h=\dfrac{96-2x^2}{4x}=\dfrac{24}{x}-\dfrac{x}{2} \text{.}\)
  2. \(\displaystyle V=24x-\dfrac{1}{2}x^3\)
  3. \(x\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\)
    \(h\) \(23.5 \) \(11 \) \(6.5 \) \(4\) \(2.3 \) \(1 \) \(-0.07 \)
    \(V\) \(23.5 \) \(44 \) \(58.5 \) \(64 \) \(57.5 \) \(36\) \(-3.5 \)
    If the base is more than \(7\) cm, the top and bottom alone exceed the total area allowed.
  4. cubic function
    Maximum of \(64\) cu. cm
  5. \(4\) cm
  6. \(h=4\) cm
    cubic and rational

11.

Answer.
  1. \(v\) \(-100\) \(-75\) \(-50\) \(-25\) \(0\) \(25\) \(50\) \(75\) \(100\)
    \(P\) \(338.15 \) \(358.92 \) \(382.41 \) \(409.19 \) \(440 \) \(475.83 \) \(518.01 \) \(568.4 \) \(629.66 \)
  2. rational function
  3. \(-20\) m/sec; \(68\) m/sec
  4. \(v \gt 12\) m/sec
  5. \(v=332\text{;}\) As \(v\) approaches \(332\) m per sec, the pitch increases without bound.

13.

Answer.
translate of reciprocal

15.

Answer.
rational

17.

Answer.
rational

19.

Answer.
rational

21.

Answer.
rational

23.

Answer.
rational

25.

Answer.
rational

27.

Answer.
rational

29.

Answer.
rational

31.

Answer.
Newtons Serpentine

33.

Answer.
  1. \(\displaystyle y=\dfrac{2}{x}+2\)
  2. rational

35.

Answer.
  1. \(\displaystyle y=\dfrac{1}{x+1}+1\)
  2. rational

37.

Answer.
  1. \(\displaystyle y=\dfrac{1}{(x-2)^2}+3\)
  2. rational

39.

Answer.
  1. \(\displaystyle \dfrac{25}{s+8} \)
  2. \(\displaystyle \dfrac{25}{s-8} \)
  3. \(\displaystyle \dfrac{50s}{s^2-64} \)

41.

Answer.
  1. \(\displaystyle \dfrac{900}{400+w} \)
  2. \(\displaystyle \dfrac{900}{400-w} \)
  3. Orville by \(\dfrac{1800w}{160,000-w^2} \) hours

43.

Answer.
  1. \(\displaystyle \dfrac{1}{f}=\dfrac{2q+60}{q^2+60q} \)
  2. \(\displaystyle f=\dfrac{q^2+60q}{2q+60} \)

45.

Answer.
  1. \(\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{k}=\dfrac{k+x}{xk}\text{,}\) so by taking reciprocals, \(y=\dfrac{kx}{x+k} \text{.}\)
  2. three rational functions
    The graphs increase from the origin and approach a horizontal asymptote at \(y=k\text{.}\)

47.

Answer.
\(\dfrac{12x}{x+20} \)

49.

Answer.
  1. \(\displaystyle V\)
  2. \(\displaystyle \dfrac{V}{2} \)
  3. rational on data points
    \(V\approx0.7, ~K\approx 2.2\) (many answers are possible)
  4. (See figure.)

51.

Answer.
  1. \(\dfrac{1}{v}=\dfrac{K}{V}\cdot\dfrac{1}{s} +\dfrac{1}{V}\text{;}\) Therefore, \(a=\dfrac{K}{V} \) and \(b=\dfrac{1}{V} \)
  2. \(\frac{1}{s}\) \(3\) \(1.5\) \(1\) \(0.6\) \(0.4\) \(0.3\) \(0.15\)
    \(\frac{1}{v} \) \(12.5\) \(7.1\) \(5\) \(3.3\) \(2.6\) \(2.2\) \(1.7\)
  3. linear fit on data points
    \(\displaystyle \dfrac{1}{v}=3.8\cdot \dfrac{1}{s}+1.1 \)
  4. \(\displaystyle V\approx 0.89, ~K\approx 3.37\)

53.

Answer.
  1. \(\displaystyle x\ne 2\)
  2. \(\displaystyle x+2\)
  3. line with hole

55.

Answer.
  1. \(\displaystyle x\ne \pm 1\)
  2. \(\displaystyle \dfrac{1}{x-1} \)
  3. line with hole

7.5 Equations That Include Algebraic Fractions
Homework 7.5

1.

Answer.
\(\dfrac{-1}{2} \)

3.

Answer.
\(\dfrac{13}{8} \)

5.

Answer.
\(\pm\sqrt{\dfrac{15}{8}} \)

7.

Answer.
\(\dfrac{1800}{1849}\approx 0.97 \)

9.

Answer.
\(37\) ft

11.

Answer.
  1. \(\displaystyle t=\dfrac{150}{50-v} \)
    rational function
  2. \(4=\dfrac{150}{50-v} \text{;}\) \(v=12.5\) mph

13.

Answer.
\(168=\dfrac{72p}{100-p}\text{;}\) \(p=70\%\)

15.

Answer.
  1. rational function and line
  2. \(\displaystyle x=1\)

17.

Answer.
  1. two rational functions
  2. \(\displaystyle x=\dfrac{1}{2} \)

19.

Answer.
  1. supply and demand curves
    $\(2.50\)
  2. \(\dfrac{160}{x}=6x+49 \text{;}\) \(x=2.50\)

21.

Answer.
  1. \(\displaystyle L=\dfrac{3200}{w} \)
  2. \(\displaystyle P=\dfrac{6400}{w}+2w \)
  3. rational function
    Lowest point: \((56.6, 226)\text{;}\) The minimum perimeter is \(226\) ft for a width of \(56.6\) ft.
  4. \(\displaystyle 240=\dfrac{6400}{w}+2w\)
  5. \(40\) ft by \(80\) ft

23.

Answer.
Multiply both sides of the equation by \(bd\) and simplify.
\begin{equation*} \frac{a}{b}\cdot \frac{bc}{1} = \frac{c}{d} \cdot \frac{bc}{1}, \text{ so } ac=bd \end{equation*}

25.

Answer.
\(4\)

27.

Answer.
\(40\)

29.

Answer.
$\(6187.50\)

31.

Answer.
\(45\) mi

33.

Answer.
\(689\)

35.

Answer.
  1. \(19,882\) m
  2. \(\displaystyle 0.3\%\)
  3. \(0.00657\) in

37.

Answer.
  1. \(\displaystyle AE = 1,~ DE = x - 1,~ CD = 1\)
  2. \(\displaystyle \dfrac{1}{x}=\dfrac{x-1}{x} \)
  3. \(\displaystyle \dfrac{1+\sqrt{5}}{2} \)

39.

Answer.
\(r=\dfrac{S-a}{S} \)

41.

Answer.
\(x=\dfrac{Hy}{2y-H} \)

43.

Answer.
\(d=\pm \sqrt{\dfrac{Gm_1 m_2}{F}} \)

45.

Answer.
\(r=\dfrac{2QI}{I+Q} \)

47.

Answer.
\(P=\dfrac{ES}{E+S} \)

49.

Answer.
\(5\)

51.

Answer.
\(1\)

53.

Answer.
\(\dfrac{-14}{5} \)

55.

Answer.
\(\dfrac{-1}{6}, \dfrac{-4}{3} \)

57.

Answer.
  1. \(\displaystyle t_1=\dfrac{144}{s-20} \)
  2. \(\displaystyle t_2=\dfrac{144}{s+20} \)
  3. rational function
    If the airspeed is \(100\) mph, the round trip will take \(3\) hours.
  4. \(\displaystyle \dfrac{144}{s-20}+\dfrac{144}{s+20}=3 \)
  5. \(100\) mph

59.

Answer.
  1. \(\displaystyle t_1=\dfrac{d}{r_1}, ~t_2=\dfrac{d}{r_2} \)
  2. Total distance is \(2d\text{;}\) total time \(\dfrac{d}{r_1}+ \dfrac{d}{r_2} \text{.}\)
  3. \(\displaystyle \dfrac{2d}{\dfrac{d}{r_1}+\dfrac{d}{r_2}} \)
  4. \(\displaystyle \dfrac{2r_1 r_2}{r_1+r_2} \)
  5. \(58\frac{1}{3}\) mph

7.6 Chapter Summary and Review
Chapter 7 Review Problems

1.

Answer.
\(2x^3 - 11x^2 + 19x - 10 \)

3.

Answer.
\(t^3 + 3t^2 - 5t - 4\)

5.

Answer.
\(31x^2\)

7.

Answer.
\(-13x^3\)

9.

Answer.
\((2x-3z)(4x^2+6xz+9z^2) \)

11.

Answer.
\((y + 3x)(y^2 - 3xy + 9x^2) \)

13.

Answer.
\(v^3 - 30v^2 + 300v - 1000\)

15.

Answer.
  1. \(\displaystyle \dfrac{1}{6}n^3-\dfrac{1}{2}n^2+\dfrac{1}{3}n \)
  2. \(\displaystyle 220\)
  3. \(\displaystyle 20\)

17.

Answer.
  1. cubic
  2. \(\displaystyle [-968, 972]\)

19.

Answer.
  1. \(\displaystyle 2, -1\)
  2. cubic

21.

Answer.
  1. \(\displaystyle 0,1, -3\)
  2. quartic

23.

Answer.
  1. \(\displaystyle 0,1, -1\)
  2. quintic

25.

Answer.
  1. \(\displaystyle -1, 1\)
  2. cubic

27.

Answer.
  1. \(\displaystyle -1, 1, \pm\sqrt{6} \)
  2. quartic

29.

Answer.
\(x(x + 2)(x - 3)\)

31.

Answer.
\(x^3(x + 2)(x - 2)\)

33.

Answer.
\(x^2(x + 4)(x - 4)\)

35.

Answer.
  1. \(\displaystyle P(-2) = 0\)
  2. \(\displaystyle \dfrac{3\pm\sqrt{13}}{2} \)

37.

Answer.
\(-2 \pm i \sqrt{6}\)

39.

Answer.
\(1 \pm \dfrac{\sqrt{6}}{3} i \)

41.

Answer.
  1. \(\displaystyle -8\)
  2. \(\displaystyle -8\)

43.

Answer.
\(\dfrac{11}{10}-\dfrac{13}{10}i \)

45.

Answer.
\(x^4 - 2x^3 + 14x^2 - 18x + 45\)

47.

Answer.
  1. four points in complex plane
  2. four points in complex plane

49.

Answer.
  1. \(\displaystyle V=\dfrac{\pi h^3}{4} \)
  2. \(2\pi\text{ cm}^3 \approx 6.28\text{ cm}^3 \text{;}\) \(16\pi\text{ cm}^3 \approx 50.27\text{ cm}^3 \)
  3. cubic

51.

Answer.
  1. rational function
  2. \(\displaystyle 338\)
  3. Months \(2\) and \(20\)
  4. During month \(6\text{.}\) The number of members eventually decreases to zero.

53.

Answer.
All numbers except \(-2, 0, 2\text{.}\)

55.

Answer.
rational function

57.

Answer.
  1. Horizontal asymptote \(y = 0\text{;}\) Vertical asymptote \(x = 4\text{;}\) \(y\)-intercept \((0,\frac{-1}{4} )\)
  2. translation of reciprocal

59.

Answer.
  1. Horizontal asymptote \(y = 1\text{;}\) Vertical asymptote \(x = -3\text{;}\) \(x\)-intercept \((2,0)\text{;}\) \(y\)-intercept \((0,\frac{-2}{3} )\)
  2. translation of reciprocal

61.

Answer.
  1. Horizontal asymptote \(y = 3\text{;}\) Vertical asymptote \(x = \pm 2\text{;}\) \(x\)-intercept \((0,0)\text{;}\) \(y\)-intercept \((0,0 )\)
  2. translation of reciprocal

63.

Answer.
  1. \(\displaystyle y=\dfrac{-5}{x+3}+3 \)
  2. transformation of reciprocal

65.

Answer.
  1. \(\displaystyle y=\dfrac{2}{(x+1)^2}+1 \)
  2. transformation of reciprocal-squared

67.

Answer.
  1. \(\displaystyle t_1=\dfrac{90}{v-2} \)
  2. \(\displaystyle t_2=\dfrac{90}{v+2} \)
  3. curve
  4. \(\displaystyle \dfrac{90}{v-2}+\dfrac{90}{v+2}=24 \)
  5. \(8\) mph

69.

Answer.
  1. supply and demand curves
  2. \(\dfrac{320}{x}=\dfrac{1}{2}x+6~\text{;}\) $\(20\)

71.

Answer.
\(299\)

73.

Answer.
\(-2\)

75.

Answer.
No solution

77.

Answer.
All \(a\) except \(-1\) and \(1\)

79.

Answer.
\(0\)

81.

Answer.
\(n=\dfrac{Ct}{C-V} \)

83.

Answer.
\(q=\dfrac{pr}{r-p} \)

8 Linear Systems
8.1 Systems of Linear Equations in Two Variables
Homework 8.1

1.

Answer.
\((3, 0) \)

3.

Answer.
\((50,70) \)

5.

Answer.
\((-2,3)\)

7.

Answer.
\((2,3)\)

9.

Answer.
two lines
Inconsistent

11.

Answer.
two lines
Consistent and independent

13.

Answer.
two lines
Dependent

15.

Answer.
Inconsistent

17.

Answer.
Consistent and independent

19.

Answer.
Dependent

21.

Answer.
  1. \(\displaystyle D = 10 + 0.09x\)
  2. \(\displaystyle F = 15 + 0.05x\)
  3. \(125\) min

23.

Answer.
  1. \(\displaystyle y = 50x\)
  2. \(\displaystyle y = 2100 - 20x\)
  3. \(30\)¢ per bushel, \(1500\) bushels

25.

Answer.
  1. \(\displaystyle C = 200 + 4x\)
  2. \(\displaystyle R = 12x\)
  3. \(25\) pendants

27.

Answer.
  1. Number of
    tickets
    Cost per
    ticket
    Revenue
    Adults \(x\) \(7.50\) \(7.50x\)
    Students \(y\) \(4.25\) \(4.25y\)
    Total \(82\) — \(465.50\)
  2. \(\displaystyle x + y = 82\)
  3. \(\displaystyle 7.50x + 4.25y = 465.50\)
  4. \(36\) adults, \(46\) students

29.

Answer.
  1. Rate Time Distance
    P waves \(5.4\) \(x\) \(y\)
    S waves \(3\) \(x+90\) y
  2. \(\displaystyle y = 3 (x + 90)\)
  3. \(\displaystyle y = 5.4x\)
  4. \((112.5, 607.5)\text{:}\) The seismograph is \(607.5\) miles from the earthquake.

31.

Answer.
\((-4.6, 52)\)

33.

Answer.
\((7.15, 4.3)\)

8.2 Systems of Linear Equations in Three Variables
Homework 8.2

1.

Answer.
\((1, 2, -1) \)

3.

Answer.
\((2, -1, -1) \)

5.

Answer.
\((4, 4, -3) \)

7.

Answer.
\((2, -2, 0)\)

9.

Answer.
\((0, -2, 3)\)

11.

Answer.
\((-1, 1, -2)\)

13.

Answer.
\(\left(\dfrac{1}{2},\dfrac{2}{3}, -3 \right) \)

15.

Answer.
\((4, -2, 2) \)

17.

Answer.
\((1, 1, 0) \)

19.

Answer.
\(\left(\dfrac{1}{2}, \dfrac{-1}{2}, \dfrac{1}{3} \right) \)

21.

Answer.
Inconsistent

23.

Answer.
\(\left(\dfrac{1}{2}, 0, 3 \right) \)

25.

Answer.
\((-1, 3, 0) \)

27.

Answer.
Inconsistent

29.

Answer.
\(\left(\dfrac{1}{2}, \dfrac{1}{2}, 3 \right) \)

31.

Answer.
\(60\) nickels, \(20\) dimes, \(5\) quarters

33.

Answer.
\(x = 40\) in, \(y = 60\) in, \(z = 55\) in

35.

Answer.
\(0.3\) cup carrots, \(0.4\) cup green beans, \(0.3\) cup cauliflower

37.

Answer.
\(40\) score only, \(20\) evaluations, \(80\) narrative report

39.

Answer.
\(20\) tennis, \(15\) Ping Pong, \(10\) squash

8.3 Solving Linear Systems Using Matrices
Homework 8.3

1.

Answer.
\(\left[ \begin{array}{@{}cc|c@{}} -2 \amp 1 \amp 0 \\ -9 \amp 3 \amp -6 \end{array}\right] \)

3.

Answer.
\(\left[ \begin{array}{@{}cc|c@{}} 1 \amp 3 \amp 6 \\ 0 \amp -2 \amp 11 \end{array}\right] \)

5.

Answer.
\(\left[ \begin{array}{@{}ccc|c@{}} 1 \amp 0 \amp -2 \amp 5 \\ 2 \amp 6 \amp -1 \amp 3 \\ 0 \amp -3 \amp 2 \amp -3 \end{array}\right] \)

7.

Answer.
\(\left[ \begin{array}{@{}ccc|c@{}} 1 \amp 2 \amp 1 \amp -5 \\ 0 \amp 4 \amp -2 \amp 3 \\ 0 \amp -9 \amp 2 \amp 12 \end{array}\right] \)

9.

Answer.
\(\left[ \begin{array}{@{}cc|c@{}} 1 \amp -3 \amp 2 \\ 0 \amp 7 \amp 0 \end{array}\right] \)

11.

Answer.
\(\left[ \begin{array}{@{}cc|c@{}} 2 \amp 6 \amp -4 \\ 4 \amp 0 \amp 3 \\ \end{array}\right] \)

13.

Answer.
\(\left[ \begin{array}{@{}ccc|c@{}} 1 \amp -2 \amp 2 \amp 1 \\ 0 \amp 7 \amp -5 \amp 4 \\ 0 \amp 9 \amp -11 \amp -1 \end{array}\right] \)

15.

Answer.
\(\left[ \begin{array}{@{}ccc|c@{}} -1 \amp 4 \amp 3 \amp 2 \\ 3 \amp 0 \amp -5 \amp 14 \\ -3 \amp 0 \amp -3 \amp 8 \end{array}\right] \)

17.

Answer.
\(\left[ \begin{array}{@{}ccc|c@{}} -2 \amp 1 \amp -3 \amp -2 \\ 0 \amp 4 \amp -6 \amp -2 \\ 0 \amp 0 \amp -4 \amp -5 \end{array}\right] \)

19.

Answer.
\((2, 3)\)

21.

Answer.
\((-2, 1)\)

23.

Answer.
\((3, -1)\)

25.

Answer.
\(\left(\dfrac{-7}{3}, \dfrac{17}{3} \right) \)

27.

Answer.
\((1, 2, 2)\)

29.

Answer.
\(\left(2, \dfrac{-1}{2},\dfrac{1}{2} \right) \)

31.

Answer.
\((-3, 1, -3) \)

33.

Answer.
\(\left(\dfrac{5}{4},\dfrac{5}{2},\dfrac{-1}{2} \right) \)

35.

Answer.
\((3, 4, -1, 2)\)

37.

Answer.
\(\left(\dfrac{5}{3},\dfrac{4}{3},\dfrac{-1}{2},\dfrac{-2}{3} \right) \)

39.

Answer.
\((-5, -2, 3, 4, 2) \)

41.

Answer.
  1. \(\displaystyle p (x) =\dfrac{-7}{6}x^3 + 7x^2 - \dfrac{65}{6}x + 7\)
  2. \(\displaystyle p (x) =\dfrac{-1}{2}x^3 + 3x^2 - \dfrac{7}{2}x + 3\)

43.

Answer.
\(p(x) = -2x^4 + x^3 - x^2 + 3x + 5\)

45.

Answer.
  1. \(\displaystyle 0=1\)
  2. No

47.

Answer.
  1. \(\displaystyle 0=0\)
  2. \(\displaystyle a = 9, b = 4, c = 2\)
  3. Yes (infinitely many)

8.4 Linear Inequalities
Homework 8.4

1.

Answer.
linear inequality in two variables

3.

Answer.
linear inequality in two variables

5.

Answer.
linear inequality in two variables

7.

Answer.
linear inequality in two variables

9.

Answer.
linear inequality in two variables

11.

Answer.
linear inequality in two variables

13.

Answer.
linear inequality in two variables

15.

Answer.
linear inequality in two variables

17.

Answer.
system of inequalities

19.

Answer.
system of inequalities

21.

Answer.
system of inequalities

23.

Answer.
system of inequalities

25.

Answer.
system of inequalities

27.

Answer.
system of inequalities, with vertices

29.

Answer.
system of inequalities, with vertices

31.

Answer.
system of inequalities, with vertices

33.

Answer.
system of inequalities, with vertices

35.

Answer.
system of inequalities, with vertices

37.

Answer.
system of inequalities

39.

Answer.
system of inequalities

41.

Answer.
system of inequalities

8.5 Linear Programming
Homework 8.5

1.

Answer.
The graph of \(12 = 3x + 4y\) does not intersect the set of feasible solutions.

3.

Answer.
\((8, 2)\text{;}\) $\(32\)

5.

Answer.
\((2,0) \)

7.

Answer.
  1. $\(22\)
  2. \(\displaystyle (8, 0)\)
  3. $\(32\)

9.

Answer.
  1. \((1,4) \text{;}\) \(7\)
  2. \((4,5) \text{;}\) \(17\)

11.

Answer.
  1. \((0,5) \text{;}\) \(-10\)
  2. \((5,0) \text{;}\) \(25\)

13.

Answer.
b. \((0,0) \text{;}\) \(0\hphantom{000}\)c. \((3,2) \text{;}\) \(13\)

15.

Answer.
b. \((0,14) \text{;}\) \(-14\hphantom{000}\)c. \((0,0) \text{;}\) \(30\)

17.

Answer.
b. \((0,8) \text{;}\) \(-160\hphantom{000}\)c. \((8,0) \text{;}\) \(1600\)

19.

Answer.
  1. \(\displaystyle C = x + 3y\)
  2. \(\displaystyle x \ge 0, ~y \ge 0, ~x + 2y \ge 250\)
  3. system of inequalities
  4. \(\displaystyle 250\)

21.

Answer.
  1. \(\displaystyle P = 36x + 24y\)
  2. \(x \ge 0\text{,}\) \(~y \ge 0\text{,}\) \(~x + y \le 180\text{,}\) \(~2x+y\le 240\)
  3. vertices at \((0,0)\text{,}\) \((120,0)\text{,}\) \((60,120)\text{,}\) \((0,180) \)
  4. $\(5040\)

23.

Answer.
  1. \(\displaystyle C = 433x + 400y\)
  2. \(x \ge 0\text{,}\) \(~y \ge 0\text{,}\) \(~2.4x + 0.8y \ge 3.2\text{,}\) \(~2.5x + 5.2y \ge 10\)
  3. system of inequalities
  4. \(967.7\) cal

25.

Answer.
Maximum \(17.4\text{;}\) minimum \(-8.4\)

27.

Answer.
Maximum \(4112\text{;}\) minimum \(0\)

29.

Answer.
Maximum \(1908\text{;}\) minimum \(0\)

8.6 Chapter Summary and Review
Chapter 8 Review Problems

1.

Answer.
\((-1, 2) \)

3.

Answer.
\(\left(\dfrac{1}{2}, \dfrac{7}{2} \right) \)

5.

Answer.
\((12, 0) \)

7.

Answer.
Consistent and independent

9.

Answer.
Dependent

11.

Answer.
\((2, 0, -1)\)

13.

Answer.
\((2, -5, 3)\)

15.

Answer.
\((-2, 1, 3)\)

17.

Answer.
\((3,-1)\)

19.

Answer.
\((4, 1)\)

21.

Answer.
\((-1,0,2)\)

23.

Answer.
\((4, 3, 1, 2)\)

25.

Answer.
\((2,-1, 5,-3, 4)\)

27.

Answer.
\(26\)

29.

Answer.
$\(3181.82\) at \(8\%\text{,}\) $\(1818.18\) at \(13.5\%\)

31.

Answer.
\(5\) cm, \(12\) cm, \(13\) cm

33.

Answer.
inequality in two variables

35.

Answer.
inequality in two variables

37.

Answer.
system of inequalities

39.

Answer.
system of inequalities

41.

Answer.
system of inequalities

43.

Answer.
system of inequalities

45.

Answer.
system of inequalities
\(20p + 8g \le 120, ~10p + 10g \le 120\)

47.

Answer.
(b) \((1, 0)\text{;}\) \(18\hphantom{00000}\) (c) \((5, 2)\text{;}\) \(186\)

49.

Answer.
  1. \(20p + 8g\le 120\text{,}\) \(10p + 10g \le 120\text{,}\) \(p\ge 0\text{,}\) \(g \ge 0\)
    system of inequalities
  2. \(2\) batches peanut butter cookies; \(10\) batches of granola cookies; for $\(125\)

9 Sequences and Series
9.1 Sequences
Homework 9.1

1.

Answer.
\(-4, -3, -2, -1\)

3.

Answer.
\(\dfrac{-1}{2}, 1, \dfrac{7}{2}, 7\)

5.

Answer.
\(2, 1.5, 1.\overline{3}, 1.25\)

7.

Answer.
\(0, 1, 3, 6\)

9.

Answer.
\(-1, 1, -1, 1\)

11.

Answer.
\(1, 0, \dfrac{-1}{3}, \dfrac{1}{2}\)

13.

Answer.
\(1, 1, 1, 1\)

15.

Answer.
\(a_1 = \dfrac{4}{3}\)

17.

Answer.
\(a_n = 3a_{n-1}\)

19.

Answer.
\(a_{n+1}=\dfrac{1}{3}a_{n+2}\)

21.

Answer.
\(58\)

23.

Answer.
\(1.415\)

25.

Answer.
\(8.944\)

27.

Answer.
\(3, 5, 7, 9, 11\)

29.

Answer.
\(24, -12, 6, -3, 1.5\)

31.

Answer.
\(1, 2, 6, 24, 120\)

33.

Answer.
\(100, 210, 331, 464.1, 610.51\)

35.

Answer.
  1. \(\displaystyle 14,000; 11,900; 10,115; 8597.75\)
  2. \(\displaystyle v_1 = 14,000; v_{n+1} = 0.85v_n\)

37.

Answer.
  1. \(\displaystyle 1.55, 2.00, 2.45, 2.90\)
  2. \(\displaystyle c_1 = 1.55; c_{n+1} = c_n + 0.45\)

39.

Answer.
  1. \(\displaystyle 50,000; 50,000; 50,000; 50,000\)
  2. \(\displaystyle v_1 = v_n\)

41.

Answer.
  1. \(\displaystyle 10, 18, 24.4, 29.52\)
  2. \(\displaystyle d_1 = 10; d_{n+1} = 0.8d_n+10\)

43.

Answer.
  1. 3
  2. 6
  3. 0, 1, 3, 6, 10
  4. \(\displaystyle L_1 = 0, L_{n+1} = n + L_n\)

45.

Answer.
  1. \(\displaystyle 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987\)
  2. \(1, 2, 1.5, 1.\overline{6}, 1.6, 1.625, 1.615, 1.619, 1.618, 1.618, 1.618, 1.618, 1.618,\)
    \(1.618, 1.618.\)
    The quotients approach a limit near \(1.618\text{.}\)
    \(\dfrac{1+\sqrt{5}}{2} \approx 1.618033989\text{,}\) the same as the limit above.

47.

Answer.
\(a_n\) approaches \(1.4142\text{,}\) or \(\sqrt{2}\text{.}\)

49.

Answer.
\(c_n\) approaches \(0.64039\text{,}\) or \(\dfrac{1+\sqrt{17}}{8}\)

51.

Answer.
\(s_n\) approaches \(2\)

9.2 Arithmetic and Geometric Sequences
Homework 9.2

1.

Answer.
Geometric

3.

Answer.
Arithmetic

5.

Answer.
Geometric

7.

Answer.
Neither

9.

Answer.
Geometric

11.

Answer.
Geometric

13.

Answer.
\(2, 6, 10, 14\)

15.

Answer.
\(\dfrac{1}{2}, \dfrac{3}{4}, 1, \dfrac{5}{4}\)

17.

Answer.
\(2.7, 1.9, 1.1, 0.3\)

19.

Answer.
\(5, -10, 20, -40\)

21.

Answer.
\(9, 6, 4, \dfrac{8}{3}\)

23.

Answer.
\(60, 24, 9.6, 3.84 \)

25.

Answer.
\(15, 19, 23, \cdots, 3 + (n-1)4\)

27.

Answer.
\(-13, -17, -21, \cdots, -1-4(n-1)\)

29.

Answer.
\(\dfrac{16}{3}, \dfrac{32}{3}, \dfrac{64}{3}, \cdots, \dfrac{2}{3}(2)^{n-1}\)

31.

Answer.
\(\dfrac{-1}{2}, \dfrac{1}{4}, \dfrac{-1}{8}, \cdots, 4(\dfrac{-1}{2})^{n-1}\)

33.

Answer.
\(7.5\)

35.

Answer.
\(\dfrac{3}{128}\)

37.

Answer.
\(3\)

39.

Answer.
\(13\)

41.

Answer.
\(s_n = 3+2(n-1)\)

43.

Answer.
\(x_n = -3(n-1)\)

45.

Answer.
\(d_n = 24(\dfrac{-1}{2})^{n-1}\)

47.

Answer.
\(w_n = 2^{n-1}\)

49.

Answer.
  1. \(\displaystyle s_n = 30+2(n-1)\)
  2. 128

51.

Answer.
  1. \(\displaystyle d_n = 50+5(n-1)\)
  2. $115

53.

Answer.
  1. \(\displaystyle V_n = 500(1.05)^{n}\)
  2. $1203.31

55.

Answer.
  1. \(\displaystyle c_n = 100(0.8)^n\)
  2. 1.15 kg

9.3 Series
Homework 9.3

1.

Answer.
\(99\)

3.

Answer.
\(106\dfrac{2}{3}\)

5.

Answer.
\(141\)

7.

Answer.
\(410\)

9.

Answer.
\(-95.8125\)

11.

Answer.
\(89.88075\)

13.

Answer.
Arithemtic; 2550

15.

Answer.
Geometric; 2046

17.

Answer.
Neither; 784

19.

Answer.
Arithmetic; 1071

21.

Answer.
Geometric; 8.996

23.

Answer.
\(1938\)

25.

Answer.
\(78\)

27.

Answer.
  1. 10.125 ft
  2. 107.25 ft

29.

Answer.
$7,400,000

31.

Answer.
66.25 sec

33.

Answer.
$6,504,532.78

35.

Answer.
4540.7 sec

37.

Answer.
$15,269.50

39.

Answer.
$10,737,418.23

9.4 Infinite Geometric Series
Homework 9.4

1.

Answer.
\(1^2+2^2+3^2+4^2\)

3.

Answer.
\(3+4+5\)

5.

Answer.
\(1(2)+2(3)+3(4)+4(5)\)

7.

Answer.
\(\dfrac{-1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}\)

9.

Answer.
\(\displaystyle{\sum_{k=1}^{4} (2k-1)}\)

11.

Answer.
\(\displaystyle{\sum_{k=1}^{4} 5^{2k-1}}\)

13.

Answer.
\(\displaystyle{\sum_{k=1}^{5} k^2}\)

15.

Answer.
\(\displaystyle{\sum_{k=1}^{5} \dfrac{k}{k+1}}\)

17.

Answer.
\(\displaystyle{\sum_{k=1}^{6} \dfrac{k}{2k-1}}\)

19.

Answer.
\(\displaystyle{\sum_{k=1}^{\infty} \dfrac{2^{k-1}}{k}}\)

21.

Answer.
Neither; 97

23.

Answer.
Neither; \(\dfrac{25}{12}\)

25.

Answer.
Neither; 100

27.

Answer.
Geometric; \(5,230,176,600\)

29.

Answer.
Atithmetic; \(20,100\)

31.

Answer.
Neither; 441

33.

Answer.
Arithemetic; 1364

35.

Answer.
Arithmetic; \(-520\)

37.

Answer.
Geometric; \(24,414,062\)

39.

Answer.
Geometric; \(104.76\)

41.

Answer.
\(1\)

43.

Answer.
\(14.12\)

45.

Answer.
\(\dfrac{5}{2}\)

47.

Answer.
\(\dfrac{3}{8}\)

49.

Answer.
\(\dfrac{4}{9}\)

51.

Answer.
\(\dfrac{31}{99}\)

53.

Answer.
\(2\dfrac{410}{999}\)

55.

Answer.
\(\dfrac{29}{225}\)

57.

Answer.
120 in

59.

Answer.
30 ft

9.5 The Binomial Expansion
Homework 9.5

1.

Answer.
\(51; 101\)

3.

Answer.
\(100; 50\)

5.

Answer.
11 rows
\(n=0\) \(\hphantom{0000}\) \(1\)
\(n=1\) \(1\hphantom{000}1\)
\(n=2\) \(1\hphantom{000}2\hphantom{000}1\)
\(n=3\) \(1\hphantom {000}3\hphantom{000} 3 \hphantom{000}1\)
\(n=4\) \(1\hphantom {000}4\hphantom{000} 6 \hphantom{000}4\hphantom{000}1\)
\(n=5\) \(1\hphantom {000} 5\hphantom{ii0} 10 \hphantom{00}10 \hphantom{0ii}5 \hphantom{000}1\)
\(n=6\) \(1\hphantom {000} 6\hphantom{ii0} 15 \hphantom{00}20 \hphantom{0ii}15 \hphantom{000} 6\hphantom{ii0}1\)
\(n=7\) \(1\hphantom {000} 7\hphantom{ii0} 21 \hphantom{00}35 \hphantom{0ii}35 \hphantom{000} 21 \hphantom{00} 7\hphantom{ii0}1\)
\(n=8\) \(1\hphantom {000} 8\hphantom{ii0} 28 \hphantom{00}56 \hphantom{0ii}70 \hphantom{ii0} 56 \hphantom{00}28 \hphantom{000} 8\hphantom{ii0}1\)
\(n=9\) \(1\hphantom {000} 9\hphantom{ii0} 36 \hphantom{00}84 \hphantom{0ii}126 \hphantom{000} 126 \hphantom{000} 84 \hphantom{00} 36 \hphantom{0ii} 9 \hphantom{ii0}1\)
\(n=10\) \(1\hphantom {000} 10\hphantom{ii0} 45 \hphantom{00} 120 \hphantom{0ii}210 \hphantom{000} 252 \hphantom{ii0} 210 \hphantom{ii0} 120\hphantom{ii0} 45 \hphantom{00} 10 \hphantom{0ii} 1\)

7.

Answer.
\(x^5 + 15x^4 + 90x^3 + 270x^2 + 405 x +243\)

9.

Answer.
\(z^4 - 12z^3 + 54z^2 - 108z + 81\)

11.

Answer.
\(8x^3 - 6x^2y + \dfrac{3}{2}xy^2 - \dfrac{1}{8}y^3\)

13.

Answer.
\(x^{14} - 21x^{12} + 189x^{10} - 945x^8 + 2835x^6 - 5103x^4 + 5103x^2 -2187\)

15.

Answer.
\(x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5\)

17.

Answer.
\(p^4 - 8p^3q +24p^2q^2 - 32pq^3 - 16p^4\)

19.

Answer.
\(2 + 150t^2\)

21.

Answer.
\(z^5 - 5z^3 + 10z - 10z^{-1} + 5z^{-3} - z^{-5}\)

23.

Answer.
  1. \(\displaystyle 5\cdot 4\cdot 3\cdot 2\cdot 1 = 120\)
  2. \(\displaystyle \dfrac{9\cdot 8\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1}{7\cdot 6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1} = 72\)
  3. \(\displaystyle \dfrac{(5\cdot 4\cdot 3\cdot 2\cdot 1)(7\cdot 6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1)}{12\cdot 11\cdot 10\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1} = \dfrac{1}{792}\)
  4. \(\displaystyle \dfrac{8\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1}{(2\cdot 1)(6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1)} = 28\)

25.

Answer.
  1. \(\displaystyle 84\)
  2. \(\displaystyle 220\)
  3. \(\displaystyle 190\)
  4. \(\displaystyle 2002\)

27.

Answer.
  1. \(\displaystyle 1-14x+84x^2\)
  2. \(\displaystyle 64-192x+240x^2\)

29.

Answer.
\(-2560u^4-320u^2-2\)

31.

Answer.
  1. \(\displaystyle 1-30c+375c^2-2500c^3\)
  2. \(\displaystyle 1-34c+495c^2-4000c^3\)

33.

Answer.
\(56\)

35.

Answer.
\(77,520\)

37.

Answer.
\(-101,376\)

39.

Answer.
\(1680\)

41.

Answer.
\(-84\)

43.

Answer.
\(1,~11,~121,~1331,~14641.~~\) The digits of the terms in the sequence correspond to the numbers in the first five rows of Pascal’s triangle. If \(11^n = (10+1)^n\) is expanded as a binomial, each term is the product of a number from Pascal’s triangle times a power of 10 times a power of 1.

9.6 Chapter Summary and Review
Chapter 9 Review Problems

1.

Answer.
\(\dfrac{1}{2}, \dfrac{2}{5}, \dfrac{3}{10}, \dfrac{4}{17}\)

3.

Answer.
\(5, 2, -1, -4, -7\)

5.

Answer.
  1. \(\displaystyle 1584, 1393.92, 1226.65, 1079.45\)
  2. \(\displaystyle a_1 = 1584,~ a_{n+1} = 0.88a_n\)

7.

Answer.
  1. \(\displaystyle 30, 37.5, 43.125, 47.34375\)
  2. \(\displaystyle a_1 = 30,~ a_{n+1} = 0.75a_n +15\)

9.

Answer.
\(x_7 = -25\)

11.

Answer.
\(32\)

13.

Answer.
\(\dfrac{-81}{8}\)

15.

Answer.
\(136\)

17.

Answer.
\(68\)

19.

Answer.
Geometric; \(\dfrac{-1}{16}, \dfrac{1}{32}, \dfrac{-1}{64}, \dfrac{1}{128};~a_n = (-1)^n (\dfrac{1}{2})^{n-1}\)

21.

Answer.
Arithmetic; \(-14, -19, -25, -29; ~a_n = 11 - 5n\)

23.

Answer.
Geometric; \(-16, 32, -64, 128; ~a_n = (-1)^n (2)^{n-1}\)

25.

Answer.
Arithmetic; \(-1, -5, -9, -13; ~a_n = 7-4n\)

27.

Answer.
Geometric; \(-48, 192, -768, 3072, ~a_n = 12(-4)^{n-1}\)

29.

Answer.
\(2(1) + 3(2) + 4(3) + 5(4)\)

31.

Answer.
\(~~\displaystyle{\sum_{k=1}^{12} ~(2^k - 1)}\)

33.

Answer.
Arithmetic; 210

35.

Answer.
Arithmetic; 57

37.

Answer.
Geometric; \(\dfrac{121}{243}\)

39.

Answer.
Neither; \(-4\)

41.

Answer.
Geometric; \(\dfrac{-9}{5}\)

43.

Answer.
\(\dfrac{64}{27}\) ft

45.

Answer.
  1. 810
  2. \(\displaystyle ~~\displaystyle{\sum_{n=2}^{16} 6n}\)

47.

Answer.
84 ft

49.

Answer.
\(\dfrac{29}{9}\)

51.

Answer.
\(x^5 - 10x^4 + 40x^3 - 80x^2 + 80x -32\)

53.

Answer.
\(20\)

55.

Answer.
\(21\)

57.

Answer.
\(32\)

59.

Answer.
\(-672\)