Order of Operations: The calculator follows the standard order of operations.
ExampleB.6.
Compute \(2+3\cdot 4\text{.}\) Press
\(2\) + \(3\)×\(4\)ENTER
Ans. \(14\)
ExampleB.7.
Compute \((2+3)\cdot4\text{.}\) Press
( \(2\) + \(3\) ) ×\(4\)ENTER
Ans. \(20\)
ExampleB.8.
Compute \(\dfrac{1}{2\cdot 3} \text{.}\) Press
\(1 \)÷ ( \(2\)×\(3\) ) ENTER
Ans. \(0.1666666667\)
ExampleB.9.
Compute \(\dfrac{1+3}{2} \text{.}\) Press
( \(1 \) + \(3\) ) ÷\(2\)ENTER
Ans. \(2\)
SubsectionExponents and Powers
Exponents: We use the caret key, ^, to enter exponents or powers.
ExampleB.10.
Evaluate \(2^{10}\text{.}\)
\(2\) ^ \(10\)ENTER
Ans. \(1024\)
Squaring: There is a short-cut key for squaring, x^2.
ExampleB.11.
Evaluate \(57^{2}\text{.}\)
\(57\)x^2ENTER
Ans. \(3249\)
Fractional Exponents: Fractional exponents must be enclosed in parentheses!
ExampleB.12.
Evaluate \(8^{2/3}\text{.}\)
\(8\)^ ( \(2\)÷\(3 \) ) ENTER
Ans. \(4\)
SubsectionRoots
Square Roots: We access the square root by pressing 2ndx^2, and the display shows \(\sqrt{}(\text{.}\) The calculator automatically gives an open parenthesis for the square root, but not a close parenthesis.
ExampleB.13.
Evaluate \(\sqrt{2} \text{.}\)
2ndx^2\(2\) ) ENTER
Ans. \(1.414213562\)
ExampleB.14.
Evaluate \(\sqrt{9+16} \text{.}\)
2ndx^2\(9\)+\(16\) ) ENTER
Ans. \(5\)
In the next example, note that we must enter ) at the end of the radicand to tell the calculator where the radical ends.
ExampleB.15.
Evaluate \(\sqrt{9}+16 \text{.}\)
2ndx^2\(9\) ) +\(16\)ENTER
Ans. \(19\)
Cube Roots: For cube roots, we press MATH to open the Math menu and press \(4\) (see Figure B.16).
ExampleB.17.
Compute \(\sqrt[3]{1728} \text{.}\)
MATH\(~4~\)\(\, 1728\,\))ENTER
Ans. \(12\)
For evaluating cube roots and square roots, ) can be omitted if there are no operations following the radical.
Other Roots: For \(n\)th roots, we press MATH to open the Math menu and press \(5\) (see Figure B.16a). The calculator symbol for \(n\)th roots, \(\sqrt[x]{~} \text{,}\) does not include an open parenthesis,(. If the radicand includes an operation, we must enclose it in parentheses.
ExampleB.18.
Compute \(\sqrt[10]{2\cdot 512} \text{.}\)
\(10\,\)MATH\(~5~\)(\(2\)×\(512\))ENTER
Ans. \(2\)
Notice that we enter the index 10 before the radical symbol.
SubsectionAbsolute Value
TI calculators use \(abs (x)\) instead of \(\abs{x}\) to denote the absolute value of \(x\text{.}\) The absolute value function is the first entry in the MATH NUM menu (see Figure B.19). The calculator gives ( for the absolute value function, but not ).
The TI calculators display numbers in scientific notation when the numbers use too many digits to display.
ExampleB.21.
Compute \(123,456,789^2 \text{.}\) Enter
\(123456789 \)x^2ENTER
Ans. \(1.524157875 \text{ E }16\)
This is how the calculator displays the number \(1.524157875 \times 10^{16}\text{.}\) Notice that the power \(10^{16}\) is displayed as \(\text{ E }16\text{.}\)
To enter a number in scientific form, we use the key labeled EE, or 2nd ,.
ExampleB.22.
To enter \(3.26 \times 10^{18}\text{,}\) use the keying sequence
\(3.26\)2nd ,(-)\(18\)ENTER
Ans. \(3.26 \text{ E}\)\(-18\)
Troubleshooting.
If your calculator gives you an error message like this, you may have made one of the following common mistakes:
Using the negative key, (-), when you wanted the subtraction key, -, or vice versa.
Omitting a ( or ). Each ( should have a matching ).